Suppr超能文献

通过点击化学对肝素进行非还原末端标记及用于肝素酶的高通量 ELISA 检测。

Non-reducing end labeling of heparan sulfate via click chemistry and a high throughput ELISA assay for heparanase.

机构信息

Department of Enzyme, Bio-Techne, R&D Systems, Minneapolis, MN 55413, USA.

Department of Protein Purification, Bio-Techne, R&D Systems, Inc. 614 McKinley Place N.E., Minneapolis, MN 55413, USA.

出版信息

Glycobiology. 2017 Jun 1;27(6):518-524. doi: 10.1093/glycob/cww130.

Abstract

Heparan sulfate (HS) is a linear polysaccharide found in the extracellular matrix (ECM) and on the cell membrane. It plays numerous roles in cellular events, including cell growth, migration and differentiation through binding to various growth factors, cytokines and other ECM proteins. Heparanase (HPSE) is an endoglycosidase that cleaves HS in the ECM and cell membrane. By degrading HS, HPSE not only alters the integrity of the ECM but also releases growth factors and angiogenic factors bound to HS chains, therefore, changes various cellular activities, including cell mobility that is critical for cancer metastasis. Accordingly, HPSE is an ideal drug target for cancer therapeutics. Here, we describe a method for non-reducing end labeling of HS via click chemistry (CC), and further use it in a novel HPSE assay. HS chains on a recombinant human syndecan-4 are first labeled at their non-reducing ends with GlcNAz using dimeric HS polymerase EXT1/EXT2. The labeled sample is then biotinylated through CC, immobilized on a multi-well plate and detected with ELISA. HPSE digestion of the biotinylated sample removes the label and, therefore, reduces the signal in ELISA assay. Non-reducing end labeling avoids the interference in an HPSE reaction caused by any internal labeling of HS. The assay is very sensitive with only 2.5 ng of labeled syndecan-4 needed in each reaction. The assay is also highly reproducible with a Z' > 0.6. Overall, this new method is suitable for high-throughput drug screening on HPSE.

摘要

硫酸乙酰肝素 (HS) 是一种存在于细胞外基质 (ECM) 和细胞膜上的线性多糖。它在细胞事件中发挥着多种作用,包括通过与各种生长因子、细胞因子和其他 ECM 蛋白结合来促进细胞生长、迁移和分化。肝素酶 (HPSE) 是一种内切糖苷酶,可在 ECM 和细胞膜中切割 HS。通过降解 HS,HPSE 不仅改变了 ECM 的完整性,还释放了与 HS 链结合的生长因子和血管生成因子,从而改变了各种细胞活动,包括对癌症转移至关重要的细胞迁移。因此,HPSE 是癌症治疗的理想药物靶点。在这里,我们描述了一种通过点击化学 (CC) 对 HS 进行非还原末端标记的方法,并进一步将其用于新型 HPSE 测定中。首先,使用二聚体 HS 聚合酶 EXT1/EXT2 将 GlcNAz 标记到重组人 syndecan-4 的非还原末端。然后,通过 CC 将标记的样品生物素化,将其固定在多孔板上,并通过 ELISA 检测。HPSE 消化生物素化样品会去除标记物,从而降低 ELISA 测定中的信号。非还原末端标记可避免 HS 任何内部标记物对 HPSE 反应的干扰。该测定法非常灵敏,每个反应仅需要 2.5ng 标记的 syndecan-4。该测定法还具有很高的重现性,Z' > 0.6。总体而言,这种新方法适合用于 HPSE 的高通量药物筛选。

相似文献

2
Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion.
J Biol Chem. 2004 Feb 27;279(9):8047-55. doi: 10.1074/jbc.M304872200. Epub 2003 Nov 20.
3
Structural characterization of human heparanase reveals insights into substrate recognition.
Nat Struct Mol Biol. 2015 Dec;22(12):1016-22. doi: 10.1038/nsmb.3136. Epub 2015 Nov 16.
4
Chemical toolbox to interrogate Heparanase-1 activity.
Curr Opin Chem Biol. 2024 Jun;80:102452. doi: 10.1016/j.cbpa.2024.102452. Epub 2024 Mar 30.
5
An Overview of the Structure, Mechanism and Specificity of Human Heparanase.
Adv Exp Med Biol. 2020;1221:139-167. doi: 10.1007/978-3-030-34521-1_5.
6
Discovery and development of small-molecule heparanase inhibitors.
Bioorg Med Chem. 2023 Jul 15;90:117335. doi: 10.1016/j.bmc.2023.117335. Epub 2023 May 19.
8
A liquid chromatography-mass spectrometry-based approach to characterize the substrate specificity of mammalian heparanase.
J Biol Chem. 2014 Dec 5;289(49):34141-51. doi: 10.1074/jbc.M114.589630. Epub 2014 Oct 21.
9
Chondroitin sulfate E blocks enzymatic action of heparanase and heparanase-induced cellular responses.
Biochem Biophys Res Commun. 2019 Nov 26;520(1):152-158. doi: 10.1016/j.bbrc.2019.09.126. Epub 2019 Oct 1.
10
HPSE-1 expression and functionality in differentiating neural cells.
J Neurosci Res. 2006 Mar;83(4):694-701. doi: 10.1002/jnr.20753.

引用本文的文献

2
Metabolic precision labeling enables selective probing of O-linked -acetylgalactosamine glycosylation.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25293-25301. doi: 10.1073/pnas.2007297117. Epub 2020 Sep 28.
3
The Development of Assays for Heparanase Enzymatic Activity: Towards a Gold Standard.
Molecules. 2018 Nov 14;23(11):2971. doi: 10.3390/molecules23112971.
4
Imaging specific cellular glycan structures using glycosyltransferases via click chemistry.
Glycobiology. 2018 Feb 1;28(2):69-79. doi: 10.1093/glycob/cwx095.

本文引用的文献

1
Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase.
Glycobiology. 2016 Jun;26(6):640-54. doi: 10.1093/glycob/cww003. Epub 2016 Jan 13.
2
Probing sialoglycans on fetal bovine fetuin with azido-sugars using glycosyltransferases.
Glycobiology. 2016 Apr;26(4):329-34. doi: 10.1093/glycob/cwv109. Epub 2015 Nov 20.
3
Glycoprotein labeling with click chemistry (GLCC) and carbohydrate detection.
Carbohydr Res. 2015 Aug 14;412:1-6. doi: 10.1016/j.carres.2015.04.018. Epub 2015 May 2.
4
A liquid chromatography-mass spectrometry-based approach to characterize the substrate specificity of mammalian heparanase.
J Biol Chem. 2014 Dec 5;289(49):34141-51. doi: 10.1074/jbc.M114.589630. Epub 2014 Oct 21.
6
Demystifying heparan sulfate-protein interactions.
Annu Rev Biochem. 2014;83:129-57. doi: 10.1146/annurev-biochem-060713-035314. Epub 2014 Mar 6.
7
The heparanase/syndecan-1 axis in cancer: mechanisms and therapies.
FEBS J. 2013 May;280(10):2294-306. doi: 10.1111/febs.12168. Epub 2013 Mar 4.
8
Extended N-sulfated domains reside at the nonreducing end of heparan sulfate chains.
J Biol Chem. 2010 Jun 11;285(24):18336-43. doi: 10.1074/jbc.M110.101592. Epub 2010 Apr 2.
9
Heparan sulfate chain valency controls syndecan-4 function in cell adhesion.
J Biol Chem. 2010 May 7;285(19):14247-58. doi: 10.1074/jbc.M109.056945. Epub 2010 Feb 12.
10
A method to describe enzyme-catalyzed reactions by combining steady state and time course enzyme kinetic parameters.
Biochim Biophys Acta. 2010 Jan;1800(1):1-5. doi: 10.1016/j.bbagen.2009.10.007. Epub 2009 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验