Suppr超能文献

枯草芽孢杆菌 C4-二羧酸转运蛋白 DctA 的生化特性分析。

Biochemical characterization of the C4-dicarboxylate transporter DctA from Bacillus subtilis.

机构信息

Department of Biochemistry, University of Groningen, Groningen Biomolecular Science and Biotechnology Institute, Nijenborgh 4, 9747 AG Groningen, Netherlands.

出版信息

J Bacteriol. 2010 Jun;192(11):2900-7. doi: 10.1128/JB.00136-10. Epub 2010 Apr 2.

Abstract

Bacterial secondary transporters of the DctA family mediate ion-coupled uptake of C(4)-dicarboxylates. Here, we have expressed the DctA homologue from Bacillus subtilis in the Gram-positive bacterium Lactococcus lactis. Transport of dicarboxylates in vitro in isolated membrane vesicles was assayed. We determined the substrate specificity, the type of cotransported ions, the electrogenic nature of transport, and the pH and temperature dependence patterns. DctA was found to catalyze proton-coupled symport of the four C(4)-dicarboxylates from the Krebs cycle (succinate, fumurate, malate, and oxaloacetate) but not of other mono- and dicarboxylates. Because (i) succinate-proton symport was electrogenic (stimulated by an internal negative membrane potential) and (ii) the divalent anionic form of succinate was recognized by DctA, at least three protons must be cotransported with succinate. The results were interpreted in the light of the crystal structure of the homologous aspartate transporter Glt(Ph) from Pyrococcus horikoshii.

摘要

DctA 家族的细菌次级转运蛋白介导 C(4)-二羧酸的离子偶联摄取。在此,我们在革兰氏阳性菌乳球菌中表达了来自枯草芽孢杆菌的 DctA 同源物。在分离的膜囊泡中体外测定二羧酸的转运。我们确定了底物特异性、共转运离子的类型、转运的电性质以及 pH 和温度依赖性模式。发现 DctA 催化来自克雷布斯循环的四种 C(4)-二羧酸(琥珀酸、富马酸、苹果酸和草酰乙酸)的质子偶联共转运,但不催化其他单羧酸和二羧酸的转运。因为 (i) 琥珀酸-质子协同转运是电活性的(受内部负膜电位刺激),并且 (ii) 琥珀酸的二价阴离子形式被 DctA 识别,所以至少有三个质子必须与琥珀酸共转运。结果根据来自 Pyrococcus horikoshii 的同源天冬氨酸转运蛋白 Glt(Ph)的晶体结构进行了解释。

相似文献

1
Biochemical characterization of the C4-dicarboxylate transporter DctA from Bacillus subtilis.
J Bacteriol. 2010 Jun;192(11):2900-7. doi: 10.1128/JB.00136-10. Epub 2010 Apr 2.
2
A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates.
Microbiology (Reading). 2014 Jul;160(Pt 7):1533-1544. doi: 10.1099/mic.0.076786-0. Epub 2014 Apr 17.
3
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
J Bacteriol. 2009 Sep;191(17):5480-8. doi: 10.1128/JB.00640-09. Epub 2009 Jul 6.
4
Transport of C(4)-dicarboxylates in Wolinella succinogenes.
J Bacteriol. 2000 Oct;182(20):5757-64. doi: 10.1128/JB.182.20.5757-5764.2000.
5
Identification of C(4)-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2011 Sep;193(17):4307-16. doi: 10.1128/JB.05074-11. Epub 2011 Jul 1.
6
DcuA of aerobically grown Escherichia coli serves as a nitrogen shuttle (L-aspartate/fumarate) for nitrogen uptake.
Mol Microbiol. 2018 Sep;109(6):801-811. doi: 10.1111/mmi.14074. Epub 2018 Jul 30.
7
High-affinity l-malate transporter DcuE of Actinobacillus succinogenes catalyses reversible exchange of C4-dicarboxylates.
Environ Microbiol Rep. 2019 Apr;11(2):129-139. doi: 10.1111/1758-2229.12719. Epub 2018 Dec 28.
8
Inactivation and regulation of the aerobic C(4)-dicarboxylate transport (dctA) gene of Escherichia coli.
J Bacteriol. 1999 Sep;181(18):5624-35. doi: 10.1128/JB.181.18.5624-5635.1999.
10
Transcriptome analysis and anaerobic C -dicarboxylate transport in Actinobacillus succinogenes.
Microbiologyopen. 2018 Jun;7(3):e00565. doi: 10.1002/mbo3.565. Epub 2017 Dec 12.

引用本文的文献

1
Evolutionary analysis reveals the origin of sodium coupling in glutamate transporters.
Nat Struct Mol Biol. 2025 Aug 25. doi: 10.1038/s41594-025-01652-z.
2
Deorphanizing solute carriers in for secondary uptake of xenobiotic compounds.
Front Microbiol. 2024 Apr 12;15:1376653. doi: 10.3389/fmicb.2024.1376653. eCollection 2024.
3
Evolutionary analysis reveals the origin of sodium coupling in glutamate transporters.
bioRxiv. 2024 Apr 25:2023.12.03.569786. doi: 10.1101/2023.12.03.569786.
4
K-12 Transcriptomics for Assessing the Mechanism of Action of High-Power Ultrasound.
Microorganisms. 2023 Nov 14;11(11):2768. doi: 10.3390/microorganisms11112768.
5
A comparison of transporter gene expression in three species of Peronospora plant pathogens during host infection.
PLoS One. 2023 Jun 1;18(6):e0285685. doi: 10.1371/journal.pone.0285685. eCollection 2023.
7
, an Attractive Cell Factory for the Expression of Functional Membrane Proteins.
Biomolecules. 2022 Jan 22;12(2):180. doi: 10.3390/biom12020180.
8
Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii.
Nat Commun. 2021 Apr 28;12(1):2454. doi: 10.1038/s41467-021-22762-4.
9
On the Role of a Conserved Methionine in the Na-Coupling Mechanism of a Neurotransmitter Transporter Homolog.
Neurochem Res. 2022 Jan;47(1):163-175. doi: 10.1007/s11064-021-03253-w. Epub 2021 Feb 9.
10
Transporter engineering in microbial cell factories: the ins, the outs, and the in-betweens.
Curr Opin Biotechnol. 2020 Dec;66:186-194. doi: 10.1016/j.copbio.2020.08.002. Epub 2020 Sep 12.

本文引用的文献

1
Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats.
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20752-7. doi: 10.1073/pnas.0908570106. Epub 2009 Nov 19.
2
Transport mechanism of a bacterial homologue of glutamate transporters.
Nature. 2009 Dec 17;462(7275):880-5. doi: 10.1038/nature08616. Epub 2009 Nov 18.
3
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
J Bacteriol. 2009 Sep;191(17):5480-8. doi: 10.1128/JB.00640-09. Epub 2009 Jul 6.
4
Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii.
J Biol Chem. 2009 Jun 26;284(26):17540-8. doi: 10.1074/jbc.M109.005926. Epub 2009 Apr 20.
5
Interactions of alkali cations with glutamate transporters.
Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):155-61. doi: 10.1098/rstb.2008.0246.
6
Identification of genes encoding the folate- and thiamine-binding membrane proteins in Firmicutes.
J Bacteriol. 2008 Nov;190(22):7591-4. doi: 10.1128/JB.01070-08. Epub 2008 Sep 5.
7
Membrane reconstitution of ABC transporters and assays of translocator function.
Nat Protoc. 2008;3(2):256-66. doi: 10.1038/nprot.2007.519.
8
Rigidity of the subunit interfaces of the trimeric glutamate transporter GltT during translocation.
J Mol Biol. 2007 Sep 21;372(3):565-70. doi: 10.1016/j.jmb.2007.06.067. Epub 2007 Jun 29.
9
High-throughput cloning and expression in recalcitrant bacteria.
Nat Methods. 2007 Sep;4(9):705-7. doi: 10.1038/nmeth1073. Epub 2007 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验