Yochelis Arik, Sheintuch Moshe
Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056201. doi: 10.1103/PhysRevE.80.056201. Epub 2009 Nov 2.
Pattern formation mechanisms of a reaction-diffusion-advection system, with one diffusivity, differential advection, and (Robin) boundary conditions of Danckwerts type, are being studied. Pattern selection requires mapping the domains of coexistence and stability of propagating or stationary nonuniform solutions, which for the general case of far from instability onsets, is conducted using spatial dynamics and numerical continuations. The selection is determined by the boundary conditions which either preserve or destroy the translational symmetry of the model. Accordingly, we explain the criterion and the properties of stationary periodic states if the system is bounded and show that propagation of nonlinear waves (including solitary) against the advective flow corresponds to coexisting family that emerges nonlinearly from a distinct oscillatory Hopf instability. Consequently, the resulting pattern selection is qualitatively different from the symmetric finite wavenumber Turing or Hopf instabilities.
正在研究一种具有一个扩散率、微分平流以及丹克沃茨类型(Robin)边界条件的反应-扩散-平流系统的模式形成机制。模式选择需要描绘传播或静止非均匀解的共存和稳定域,对于远离不稳定性起始的一般情况,这是通过空间动力学和数值延拓来进行的。选择由边界条件决定,边界条件要么保持要么破坏模型的平移对称性。因此,我们解释了如果系统有界时静止周期态的准则和性质,并表明非线性波(包括孤立波)逆着平流流动的传播对应于从一个独特的振荡霍普夫不稳定性非线性出现的共存族。因此,最终的模式选择在性质上不同于对称有限波数图灵或霍普夫不稳定性。