Suppr超能文献

图灵模式的非线性效应:时间振荡与混沌

Nonlinear effects on Turing patterns: time oscillations and chaos.

作者信息

Aragón J L, Barrio R A, Woolley T E, Baker R E, Maini P K

机构信息

Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, México.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 2):026201. doi: 10.1103/PhysRevE.86.026201. Epub 2012 Aug 8.

Abstract

We show that a model reaction-diffusion system with two species in a monostable regime and over a large region of parameter space produces Turing patterns coexisting with a limit cycle which cannot be discerned from the linear analysis. As a consequence, the patterns oscillate in time. When varying a single parameter, a series of bifurcations leads to period doubling, quasiperiodic, and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos is identified. We also examine the Turing conditions for obtaining a diffusion-driven instability and show that the patterns obtained are not necessarily stationary for certain values of the diffusion coefficients. These results demonstrate the limitations of the linear analysis for reaction-diffusion systems.

摘要

我们表明,一个具有两种物质的模型反应扩散系统,在单稳状态下且在参数空间的很大区域内,会产生与极限环共存的图灵模式,而这是线性分析无法识别的。因此,这些模式会随时间振荡。当改变单个参数时,一系列分岔会导致周期加倍、准周期和混沌振荡,而不会改变潜在的图灵模式。确定了一条通往混沌的吕埃勒 - 塔肯斯 - 纽豪斯路径。我们还研究了获得扩散驱动不稳定性的图灵条件,并表明对于某些扩散系数值,所获得的模式不一定是静止的。这些结果证明了反应扩散系统线性分析的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验