Suppr超能文献

心脏纤维复极交替的远程控制。

Off-site control of repolarization alternans in cardiac fibers.

作者信息

Krogh-Madsen Trine, Karma Alain, Riccio Mark L, Jordan Peter N, Christini David J, Gilmour Robert F

机构信息

Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, New York 10021, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011915. doi: 10.1103/PhysRevE.81.011915. Epub 2010 Jan 25.

Abstract

Repolarization alternans, a beat-to-beat alternation in action potential duration, has been putatively linked to the onset of cardiac reentry. Anti-alternans control strategies can eliminate alternans in individual cells by exploiting the rate dependence of action potential duration. The same approach, when applied to a common measuring/stimulating site at one end of a cardiac fiber, has been shown to have limited spatial efficacy. As a first step toward spatially distributed electrode control systems, we investigated "off-site" control in canine Purkinje fibers, in which the recording and control sites are different. We found experimentally that alternans can be eliminated at, or very near, the recording site, and that varying the location of the recording site along the fiber causes the node (the location with no alternans) to move along the fiber in close proximity to the recording site. Theoretical predictions based on an amplitude equation [B. Echebarria and A. Karma, Chaos 12, 923 (2002)] show that those findings follow directly from the wave nature of alternans: the most unstable mode of alternans along the fiber is a wave solution of a one-dimensional Helmholtz equation with a node position that only deviates slightly from the recording site by an amount dependent on electrotonic coupling. Computer simulations using a Purkinje fiber model confirm these theoretical and experimental results. Although off-site alternans control does not suppress alternans along the entire fiber, our results indicate that placing the node away from the stimulus site reduces alternans amplitude along the fiber, and may therefore have implications for antiarrhythmic strategies based on alternans termination.

摘要

复极化交替现象,即动作电位持续时间的逐搏交替,被推测与心脏折返的发生有关。抗交替控制策略可以通过利用动作电位持续时间的频率依赖性来消除单个细胞中的交替现象。当将相同方法应用于心脏纤维一端的一个公共测量/刺激位点时,已证明其空间有效性有限。作为迈向空间分布电极控制系统的第一步,我们研究了犬浦肯野纤维中的“异位”控制,其中记录位点和控制位点不同。我们通过实验发现,交替现象可以在记录位点或非常接近记录位点的位置被消除,并且沿着纤维改变记录位点的位置会使节点(无交替现象的位置)沿着纤维移动并紧邻记录位点。基于振幅方程[B. Echebarria和A. Karma,《混沌》12,923(2002)]的理论预测表明,这些发现直接源于交替现象的波动性质:沿着纤维最不稳定的交替模式是一维亥姆霍兹方程的波动解,其节点位置仅与记录位点略有偏差,偏差量取决于电紧张耦合。使用浦肯野纤维模型的计算机模拟证实了这些理论和实验结果。尽管异位交替控制不会抑制整个纤维上的交替现象,但我们的结果表明,将节点置于远离刺激位点的位置会降低纤维上交替现象的幅度,因此可能对基于交替现象终止的抗心律失常策略具有启示意义。

相似文献

1
Off-site control of repolarization alternans in cardiac fibers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011915. doi: 10.1103/PhysRevE.81.011915. Epub 2010 Jan 25.
2
Model-based control of cardiac alternans in Purkinje fibers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041927. doi: 10.1103/PhysRevE.84.041927. Epub 2011 Oct 21.
3
Control of electrical alternans in canine cardiac purkinje fibers.
Phys Rev Lett. 2006 Mar 17;96(10):104101. doi: 10.1103/PhysRevLett.96.104101.
4
Control of action potential duration alternans in canine cardiac ventricular tissue.
IEEE Trans Biomed Eng. 2011 Apr;58(4):894-904. doi: 10.1109/TBME.2010.2089984. Epub 2010 Oct 28.
5
Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051911. doi: 10.1103/PhysRevE.76.051911. Epub 2007 Nov 12.
6
Control of action potential duration alternans in canine ventricular tissue.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1997-2000. doi: 10.1109/IEMBS.2010.5627828.
8
Adaptive diastolic interval control of cardiac action potential duration alternans.
J Cardiovasc Electrophysiol. 2004 Oct;15(10):1177-85. doi: 10.1046/j.1540-8167.2004.04098.x.
9
Spatiotemporal intracellular calcium dynamics during cardiac alternans.
Chaos. 2009 Sep;19(3):037115. doi: 10.1063/1.3207835.

引用本文的文献

1
Sensitivity of a data-assimilation system for reconstructing three-dimensional cardiac electrical dynamics.
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190388. doi: 10.1098/rsta.2019.0388. Epub 2020 May 25.
2
Control of voltage-driven instabilities in cardiac myocytes with memory.
Chaos. 2018 Nov;28(11):113122. doi: 10.1063/1.5040854.
3
Spatiotemporal dynamics of calcium-driven cardiac alternans.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052707. doi: 10.1103/PhysRevE.89.052707. Epub 2014 May 14.
4
Nonlinear and Stochastic Dynamics in the Heart.
Phys Rep. 2014 Oct 10;543(2):61-162. doi: 10.1016/j.physrep.2014.05.002.
5
Non-linear dynamics of cardiac alternans: subcellular to tissue-level mechanisms of arrhythmia.
Front Physiol. 2012 May 31;3:157. doi: 10.3389/fphys.2012.00157. eCollection 2012.
6
Nonlinear dynamics in cardiology.
Annu Rev Biomed Eng. 2012;14:179-203. doi: 10.1146/annurev-bioeng-071811-150106. Epub 2012 Apr 18.

本文引用的文献

1
Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051911. doi: 10.1103/PhysRevE.76.051911. Epub 2007 Nov 12.
2
Control of electrical alternans in canine cardiac purkinje fibers.
Phys Rev Lett. 2006 Mar 17;96(10):104101. doi: 10.1103/PhysRevLett.96.104101.
3
Mechanism of discordant T wave alternans in the in vivo heart.
J Cardiovasc Electrophysiol. 2003 Jun;14(6):632-8. doi: 10.1046/j.1540-8167.2003.03028.x.
4
Spatiotemporal control of cardiac alternans.
Chaos. 2002 Sep;12(3):923-930. doi: 10.1063/1.1501544.
5
Experimental control of cardiac muscle alternans.
Phys Rev Lett. 2002 May 13;88(19):198102. doi: 10.1103/PhysRevLett.88.198102. Epub 2002 Apr 30.
6
Instability and spatiotemporal dynamics of alternans in paced cardiac tissue.
Phys Rev Lett. 2002 May 20;88(20):208101. doi: 10.1103/PhysRevLett.88.208101. Epub 2002 May 6.
7
Spatiotemporal transition to conduction block in canine ventricle.
Circ Res. 2002 Feb 22;90(3):289-96. doi: 10.1161/hh0302.104723.
8
Nonlinear-dynamical arrhythmia control in humans.
Proc Natl Acad Sci U S A. 2001 May 8;98(10):5827-32. doi: 10.1073/pnas.091553398. Epub 2001 Apr 24.
9
Mechanisms for discordant alternans.
J Cardiovasc Electrophysiol. 2001 Feb;12(2):196-206. doi: 10.1046/j.1540-8167.2001.00196.x.
10
Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue.
Circulation. 2000 Oct 3;102(14):1664-70. doi: 10.1161/01.cir.102.14.1664.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验