Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA.
Chaos. 2009 Sep;19(3):037115. doi: 10.1063/1.3207835.
Cellular calcium transient alternans are beat-to-beat alternations in the peak cytosolic calcium concentration exhibited by cardiac cells during rapid electrical stimulation or under pathological conditions. Calcium transient alternans promote action potential duration alternans, which have been linked to the onset of life-threatening ventricular arrhythmias. Here we use a recently developed physiologically detailed mathematical model of ventricular myocytes to investigate both stochastic and deterministic aspects of intracellular calcium dynamics during alternans. The model combines a spatially distributed description of intracellular calcium cycling, where a large number of calcium release units are spatially distributed throughout the cell, with a full set of ionic membrane currents. The results demonstrate that ion channel stochasticity at the level of single calcium release units can influence the whole-cell alternans dynamics by causing phase reversals over many beats during fixed frequency pacing close to the alternans bifurcation. They also demonstrate the existence of a wide range of dynamical states. Depending on the sign and magnitude of calcium-voltage coupling, calcium alternans can be spatially synchronized or desynchronized, in or out of phase with action potential duration alternans, and the node separating out-of-phase regions of calcium alternans can be expelled from or trapped inside the cell. This range of states is found to be larger than previously anticipated by including a robust global attractor where calcium alternans can be spatially synchronized but out of phase with action potential duration alternans. The results are explained by a combined theoretical analysis of alternans stability and node motion using general iterative maps of the beat-to-beat dynamics and amplitude equations.
细胞钙瞬变折返是指在快速电刺激或病理条件下,心脏细胞表现出的胞质钙离子浓度峰值的逐拍交替变化。钙瞬变折返促进动作电位时程折返,这与危及生命的室性心律失常的发生有关。在这里,我们使用最近开发的心室肌细胞的生理详细数学模型来研究折返期间细胞内钙动力学的随机和确定性方面。该模型结合了细胞内钙循环的空间分布描述,其中大量钙释放单元在整个细胞中空间分布,并结合了完整的离子膜电流。结果表明,单个钙释放单元水平的离子通道随机性可以通过在接近折返分岔的固定频率起搏期间在许多拍中引起相位反转,从而影响整个细胞的折返动力学。它们还证明了存在广泛的动态状态。根据钙电压耦合的符号和大小,钙折返可以与动作电位时程折返同步或不同步,相位同步或不同步,并且分离钙折返不同步区域的节点可以从细胞内部或内部排出。通过包括一个稳健的全局吸引子,发现这种状态范围比以前预期的要大,在该吸引子中,钙折返可以与动作电位时程折返同步,但相位不同。通过使用逐拍动力学和幅度方程的一般迭代映射对折返稳定性和节点运动进行联合理论分析,可以解释这些结果。