School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.
School of Computational Science and Engineering, Atlanta, GA 30332, USA.
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190388. doi: 10.1098/rsta.2019.0388. Epub 2020 May 25.
Modelling of cardiac electrical behaviour has led to important mechanistic insights, but important challenges, including uncertainty in model formulations and parameter values, make it difficult to obtain quantitatively accurate results. An alternative approach is combining models with observations from experiments to produce a data-informed reconstruction of system states over time. Here, we extend our earlier data-assimilation studies using an ensemble Kalman filter to reconstruct a three-dimensional time series of states with complex spatio-temporal dynamics using only surface observations of voltage. We consider the effects of several algorithmic and model parameters on the accuracy of reconstructions of known scroll-wave truth states using synthetic observations. In particular, we study the algorithm's sensitivity to parameters governing different parts of the process and its robustness to several model-error conditions. We find that the algorithm can achieve an acceptable level of error in many cases, with the weakest performance occurring for model-error cases and more extreme parameter regimes with more complex dynamics. Analysis of the poorest-performing cases indicates an initial decrease in error followed by an increase when the ensemble spread is reduced. Our results suggest avenues for further improvement through increasing ensemble spread by incorporating additive inflation or using a parameter or multi-model ensemble. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
心脏电生理行为建模已经取得了重要的机理见解,但包括模型公式和参数值的不确定性在内的重要挑战,使得难以获得定量准确的结果。另一种方法是将模型与来自实验的观测结果相结合,以随时间产生对系统状态的知情重构。在这里,我们使用集合卡尔曼滤波器扩展了我们早期的基于数据同化的研究,仅使用电压的表面观测,来重构具有复杂时空动力学的三维时间序列状态。我们考虑了几种算法和模型参数对使用合成观测重建已知涡旋波真实状态的重构准确性的影响。特别是,我们研究了算法对控制过程不同部分的参数的敏感性及其对几种模型误差情况的鲁棒性。我们发现,在许多情况下,该算法可以达到可接受的误差水平,在模型误差情况下和具有更复杂动力学的更极端参数范围内表现最差。对表现最差的情况进行的分析表明,在集合扩展减小后,错误会先减小后增大。我们的结果表明,通过增加集合扩展,例如通过添加附加膨胀或使用参数或多模型集合,进一步提高性能的途径。本文是主题问题“心脏和心血管建模与仿真中的不确定性量化”的一部分。