Assaf Michael, Meerson Baruch
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021116. doi: 10.1103/PhysRevE.81.021116. Epub 2010 Feb 9.
We investigate the phenomenon of extinction of a long-lived self-regulating stochastic population, caused by intrinsic (demographic) noise. Extinction typically occurs via one of two scenarios depending on whether the absorbing state n=0 is a repelling (scenario A) or attracting (scenario B) point of the deterministic rate equation. In scenario A the metastable stochastic population resides in the vicinity of an attracting fixed point next to the repelling point n=0 . In scenario B there is an intermediate repelling point n=n1 between the attracting point n=0 and another attracting point n=n2 in the vicinity of which the metastable population resides. The crux of the theory is a dissipative variant of WKB (Wentzel-Kramers-Brillouin) approximation which assumes that the typical population size in the metastable state is large. Starting from the master equation, we calculate the quasistationary probability distribution of the population sizes and the (exponentially long) mean time to extinction for each of the two scenarios. When necessary, the WKB approximation is complemented (i) by a recursive solution of the quasistationary master equation at small n and (ii) by the van Kampen system-size expansion, valid near the fixed points of the deterministic rate equation. The theory yields both entropic barriers to extinction and pre-exponential factors, and holds for a general set of multistep processes when detailed balance is broken. The results simplify considerably for single-step processes and near the characteristic bifurcations of scenarios A and B.
我们研究了由内在(人口统计学)噪声导致的长寿命自我调节随机种群的灭绝现象。灭绝通常通过两种情况之一发生,这取决于吸收态(n = 0)是确定性速率方程的排斥点(情况A)还是吸引点(情况B)。在情况A中,亚稳态随机种群位于排斥点(n = 0)旁边的吸引不动点附近。在情况B中,在吸引点(n = 0)和另一个吸引点(n = n_2)之间存在一个中间排斥点(n = n_1),亚稳态种群位于该吸引点附近。该理论的关键是WKB(温策尔 - 克拉默斯 - 布里渊)近似的耗散变体,它假设亚稳态下的典型种群规模很大。从主方程出发,我们计算了两种情况中每种情况下种群规模的准静态概率分布以及(指数级长的)平均灭绝时间。必要时,WKB近似通过以下方式进行补充:(i)在(n)较小时对准静态主方程进行递归求解,以及(ii)在确定性速率方程的不动点附近有效的范坎彭系统规模展开。该理论既给出了灭绝的熵垒,也给出了指数前因子,并且在详细平衡被打破时适用于一般的多步过程集。对于单步过程以及在情况A和B的特征分岔附近,结果大大简化。