Suppr超能文献

计算生物学中的模型整合:可重复性、可信度和实用性的作用。

Model Integration in Computational Biology: The Role of Reproducibility, Credibility and Utility.

作者信息

Karr Jonathan, Malik-Sheriff Rahuman S, Osborne James, Gonzalez-Parra Gilberto, Forgoston Eric, Bowness Ruth, Liu Yaling, Thompson Robin, Garira Winston, Barhak Jacob, Rice John, Torres Marcella, Dobrovolny Hana M, Tang Tingting, Waites William, Glazier James A, Faeder James R, Kulesza Alexander

机构信息

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, United Kingdom.

出版信息

Front Syst Biol. 2022;2. doi: 10.3389/fsysb.2022.822606. Epub 2022 Mar 7.

Abstract

During the COVID-19 pandemic, mathematical modeling of disease transmission has become a cornerstone of key state decisions. To advance the state-of-the-art host viral modeling to handle future pandemics, many scientists working on related issues assembled to discuss the topics. These discussions exposed the reproducibility crisis that leads to inability to reuse and integrate models. This document summarizes these discussions, presents difficulties, and mentions existing efforts towards future solutions that will allow future model utility and integration. We argue that without addressing these challenges, scientists will have diminished ability to build, disseminate, and implement high-impact multi-scale modeling that is needed to understand the health crises we face.

摘要

在新冠疫情期间,疾病传播的数学建模已成为关键国家决策的基石。为了推进最先进的宿主病毒建模以应对未来的大流行,许多从事相关问题研究的科学家齐聚一堂进行讨论。这些讨论揭示了导致模型无法重复使用和整合的可重复性危机。本文档总结了这些讨论,提出了困难,并提及了为实现未来解决方案所做的现有努力,这些努力将使未来的模型具有实用性和可整合性。我们认为,如果不应对这些挑战,科学家构建、传播和实施理解我们所面临的健康危机所需的高影响力多尺度建模的能力将会减弱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e172/10002468/f34f128f48c4/nihms-1874320-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验