Colosqui Carlos E
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 2):026702. doi: 10.1103/PhysRevE.81.026702. Epub 2010 Feb 4.
In this work, closure of the Boltzmann-Bhatnagar-Gross-Krook (Boltzmann-BGK) moment hierarchy is accomplished via projection of the distribution function f onto a space H(N) spanned by N-order Hermite polynomials. While successive order approximations retain an increasing number of leading-order moments of f , the presented procedure produces a hierarchy of (single) N-order partial-differential equations providing exact analytical description of the hydrodynamics rendered by ( N-order) lattice Boltzmann-BGK (LBBGK) simulation. Numerical analysis is performed with LBBGK models and direct simulation Monte Carlo for the case of a sinusoidal shear wave (Kolmogorov flow) in a wide range of Weissenberg number Wi=taunuk(2) (i.e., Knudsen number Kn=lambdak=square root Wi); k is the wave number, [corrected] tau is the relaxation time of the system, and lambda approximately tauc(s) is the mean-free path, where c(s) is the speed of sound. The present results elucidate the applicability of LBBGK simulation under general nonequilibrium conditions.
在这项工作中,玻尔兹曼-巴特纳格尔-格罗斯-克鲁克(Boltzmann-BGK)矩层次的封闭是通过将分布函数f投影到由N阶埃尔米特多项式所张成的空间H(N)上实现的。虽然逐阶近似保留了越来越多f的主导阶矩,但所提出的方法产生了一个(单个)N阶偏微分方程层次,为(N阶)格子玻尔兹曼- BGK(LBBGK)模拟所呈现的流体动力学提供了精确的解析描述。针对正弦剪切波(柯尔莫哥洛夫流)在广泛的魏森贝格数Wi = τ/νk²(即克努森数Kn = λ/k = √Wi)情况下,使用LBBGK模型和直接模拟蒙特卡罗方法进行了数值分析;k是波数,[校正后]τ是系统的弛豫时间,且λ≈τc(s)是平均自由程,其中c(s)是声速。目前的结果阐明了LBBGK模拟在一般非平衡条件下的适用性。