Dana Itzhack
Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 2):036210. doi: 10.1103/PhysRevE.81.036210. Epub 2010 Mar 9.
The quantum ratchet effect in fully chaotic systems is approached by studying statistical properties of the ratchet current over well-defined sets of initial states. Natural initial states in a semiclassical regime are those that are phase-space uniform with the maximal possible resolution of one Planck cell. General arguments in this regime, for quantum-resonance values of a scaled Planck constant variant Planck's over 2pi , predict that the distribution of the current over all such states is a zero-mean Gaussian with variance approximately Dvariant Planck's over 2pi2/(2pi2) , where D is the chaotic-diffusion coefficient. This prediction is well supported by extensive numerical evidence. The average strength of the effect, measured by the variance above, is significantly larger than that for the usual momentum states and other states. Such strong effects should be experimentally observable.
通过研究棘轮电流在定义明确的初始状态集上的统计特性,来探讨完全混沌系统中的量子棘轮效应。在半经典区域中的自然初始状态是那些在相空间中均匀分布且具有一个普朗克单元最大可能分辨率的状态。在该区域中,对于标度化普朗克常数(普朗克常数除以(2\pi))的量子共振值的一般论证预测,在所有这些状态上电流的分布是一个零均值高斯分布,其方差约为(D)乘以普朗克常数除以(2\pi)的平方再除以(2\pi^2),其中(D)是混沌扩散系数。这一预测得到了大量数值证据的有力支持。通过上述方差测量的效应平均强度,显著大于通常动量状态和其他状态的效应平均强度。这种强效应应该在实验中可以观测到。