Suppr超能文献

通过整合表达数量性状基因座与复杂性状遗传关联来研究候选因果调控效应。

Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations.

机构信息

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.

出版信息

PLoS Genet. 2010 Apr 1;6(4):e1000895. doi: 10.1371/journal.pgen.1000895.

Abstract

The recent success of genome-wide association studies (GWAS) is now followed by the challenge to determine how the reported susceptibility variants mediate complex traits and diseases. Expression quantitative trait loci (eQTLs) have been implicated in disease associations through overlaps between eQTLs and GWAS signals. However, the abundance of eQTLs and the strong correlation structure (LD) in the genome make it likely that some of these overlaps are coincidental and not driven by the same functional variants. In the present study, we propose an empirical methodology, which we call Regulatory Trait Concordance (RTC) that accounts for local LD structure and integrates eQTLs and GWAS results in order to reveal the subset of association signals that are due to cis eQTLs. We simulate genomic regions of various LD patterns with both a single or two causal variants and show that our score outperforms SNP correlation metrics, be they statistical (r(2)) or historical (D'). Following the observation of a significant abundance of regulatory signals among currently published GWAS loci, we apply our method with the goal to prioritize relevant genes for each of the respective complex traits. We detect several potential disease-causing regulatory effects, with a strong enrichment for immunity-related conditions, consistent with the nature of the cell line tested (LCLs). Furthermore, we present an extension of the method in trans, where interrogating the whole genome for downstream effects of the disease variant can be informative regarding its unknown primary biological effect. We conclude that integrating cellular phenotype associations with organismal complex traits will facilitate the biological interpretation of the genetic effects on these traits.

摘要

最近全基因组关联研究(GWAS)的成功,现在面临着如何确定报道的易感变异如何介导复杂性状和疾病的挑战。通过 eQTL 和 GWAS 信号之间的重叠,表达数量性状基因座(eQTL)与疾病关联有关。然而,eQTL 的丰富性和基因组中的强相关结构(LD)使得其中一些重叠很可能是偶然的,而不是由相同的功能变体驱动的。在本研究中,我们提出了一种经验方法,称为调控性状一致性(RTC),它考虑了局部 LD 结构,并整合了 eQTL 和 GWAS 结果,以揭示由于 cis-eQTL 而导致的关联信号子集。我们模拟了具有单个或两个因果变体的各种 LD 模式的基因组区域,并表明我们的分数优于 SNP 相关度量标准,无论是统计(r(2))还是历史(D')。在观察到当前发表的 GWAS 基因座中存在大量调控信号之后,我们应用我们的方法来优先考虑每个复杂性状的相关基因。我们检测到了几种潜在的致病调控效应,其中与免疫相关的条件明显富集,与所测试的细胞系(LCL)的性质一致。此外,我们提出了该方法在转的扩展,其中可以询问疾病变异的整个基因组的下游效应,这对于其未知的主要生物学效应是有信息的。我们得出结论,将细胞表型关联与机体复杂性状整合起来,将有助于对这些性状的遗传效应进行生物学解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/353c/2848550/e102934fff6c/pgen.1000895.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验