Suppr超能文献

病毒外壳蛋白的多壳层结构。

Multishell structures of virus coat proteins.

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA.

出版信息

J Phys Chem B. 2010 Apr 29;114(16):5522-33. doi: 10.1021/jp911040z.

Abstract

Under conditions of low ionic strength and a pH ranging between about 3.7 and 5.0, solutions of purified coat proteins of cowpea chlorotic mottle virus (CCMV) form spherical multishell structures in the absence of viral RNA. The outer surfaces of the shells in these structures are negatively charged, whereas the inner surfaces are positively charged due to a disordered cationic N-terminal domain of the capsid protein, the arginine-rich RNA-binding motif that protrudes into the interior. We show that the main forces stabilizing these multishells are counterion release combined with a lower charge density in the RNA-binding motif region of the outer shells due to their larger radii of curvature, arguing that these compensate for the outer shells not being able to adopt the smaller, optimal, radius of curvature of the inner shell. This explains why the structures are only stable at low ionic strengths at pHs for which the outer surface is negatively charged and why the larger outer shells are not observed separately in solution. We show how to calculate the free energy of shells of nonoptimal radius of curvature from the elastic properties of the native shell. The spacing between shells is determined mainly by the entropic elasticity of the RNA-binding motifs. Although we focus on CCMV multishells, we also predict the solution conditions under which multishells formed by CCMV coat protein mutants with a lower RNA-binding motif charge are stable, and we examine other viruses as well. We conclude that at a given surface charge density, the boundaries separating regions of stable multishells with different numbers of shells shift to lower ionic strengths upon either increasing the length of the RNA-binding motif, increasing the stiffness of the shells, or decreasing the charge per RNA-binding motif.

摘要

在低离子强度和 pH 值在 3.7 到 5.0 之间的条件下,纯化的豇豆花叶病毒(CCMV)外壳蛋白在没有病毒 RNA 的情况下形成球形多壳结构。这些结构中壳的外表面带负电荷,而内表面带正电荷,这是由于外壳蛋白的无序阳离子 N 端结构域和突入内部的富含精氨酸的 RNA 结合模体。我们表明,稳定这些多壳的主要力是抗衡离子释放,以及由于外壳的曲率半径较大,在外壳的 RNA 结合模体区域的电荷密度降低,这表明这些力补偿了外壳无法采用较小的、内壳的最佳曲率半径。这解释了为什么这些结构仅在 pH 值为负电荷的低离子强度下稳定,以及为什么较大的外壳在溶液中不能单独观察到。我们展示了如何根据天然外壳的弹性特性从非最佳曲率半径的外壳计算自由能。壳之间的间距主要由 RNA 结合模体的熵弹性决定。虽然我们专注于 CCMV 多壳,但我们还预测了具有较低 RNA 结合模体电荷的 CCMV 外壳蛋白突变体形成多壳的溶液条件,并研究了其他病毒。我们得出结论,在给定的表面电荷密度下,分离具有不同壳数的稳定多壳区域的边界会随着 RNA 结合模体长度的增加、壳的刚性的增加或每个 RNA 结合模体的电荷的减少而向较低的离子强度转移。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验