Suppr超能文献

密封硅纳米管阵列作为锂离子电池的阳极。

Arrays of sealed silicon nanotubes as anodes for lithium ion batteries.

机构信息

Division of Materials Science Engineering, Hanyang University, Seoul, Korea.

出版信息

Nano Lett. 2010 May 12;10(5):1710-6. doi: 10.1021/nl100086e.

Abstract

Silicon is a promising candidate for electrodes in lithium ion batteries due to its large theoretical energy density. Poor capacity retention, caused by pulverization of Si during cycling, frustrates its practical application. We have developed a nanostructured form of silicon, consisting of arrays of sealed, tubular geometries that is capable of accommodating large volume changes associated with lithiation in battery applications. Such electrodes exhibit high initial Coulombic efficiencies (i.e., >85%) and stable capacity-retention (>80% after 50 cycles), due to an unusual, underlying mechanics that is dominated by free surfaces. This physics is manifested by a strongly anisotropic expansion in which 400% volumetric increases are accomplished with only relatively small (<35%) changes in the axial dimension. These experimental results and associated theoretical mechanics models demonstrate the extent to which nanoscale engineering of electrode geometry can be used to advantage in the design of rechargeable batteries with highly reversible capacity and long-term cycle stability.

摘要

硅由于其理论上的高能量密度,是锂离子电池电极的一个很有前途的候选材料。然而,硅在循环过程中的粉化导致其容量保持率较差,从而阻碍了其实际应用。我们已经开发出一种纳米结构的硅,由密封的管状结构阵列组成,能够适应与电池应用中的锂化相关的大体积变化。这种电极表现出高的初始库仑效率(即,>85%)和稳定的容量保持率(>80%,经过 50 次循环后),这是由于一种不寻常的、主要由自由表面主导的基础力学。这种物理现象表现为强烈的各向异性膨胀,其中 400%的体积增加仅伴随着相对较小的(<35%)轴向尺寸变化。这些实验结果和相关的理论力学模型表明,在设计具有高可逆容量和长期循环稳定性的可充电电池时,电极几何形状的纳米级工程可以在多大程度上带来优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验