Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
J Chem Phys. 2010 Mar 28;132(12):124903. doi: 10.1063/1.3361673.
Using nonequilibrium Brownian dynamics computer simulations, we have investigated the steady state statistics of a polymer chain under three different shear environments: (i) linear shear flow in the bulk (no interfaces), (ii) shear vorticity normal to the adsorbing interface, and (iii) shear gradient normal to the adsorbing interface. The statistical distribution of the chain end-to-end distance and its orientational angles are calculated within our computer simulations. Over a wide range of shear rates, this distribution can be mapped onto a simple theoretical finite-extensible-nonlinear-elastic dumbbell model with fitted anisotropic effective spring constants. The tails of the angular distribution functions are consistent with scaling predictions borrowed from the bulk dumbbell model. Finally, the frequency of the characteristic periodic tumbling motion has been investigated by simulation as well and was found to be sublinear with the shear rate for the three setups, which extends earlier results done in experiments and simulations for free and tethered polymer molecules without adsorption.
使用非平衡布朗动力学计算机模拟,我们研究了在三种不同剪切环境下聚合物链的稳态统计:(i)无界面的体相线性剪切流,(ii)垂直于吸附界面的剪切涡度,和(iii)垂直于吸附界面的剪切梯度。在我们的计算机模拟中,计算了链末端到末端距离及其取向角的统计分布。在很宽的剪切速率范围内,该分布可以映射到一个简单的理论有限可伸展非线性弹性哑铃模型,该模型具有拟合的各向异性有效弹簧常数。角分布函数的尾部与从体相哑铃模型借用的标度预测一致。最后,通过模拟也研究了特征周期性翻滚运动的频率,发现对于三种设置,该频率与剪切速率呈次线性关系,这扩展了以前在没有吸附的自由和束缚聚合物分子的实验和模拟中的结果。