Suppr超能文献

在完整膜片中 GluN1/GluN2B 受体的固定门控。

Stationary gating of GluN1/GluN2B receptors in intact membrane patches.

机构信息

Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York, USA.

出版信息

Biophys J. 2010 Apr 7;98(7):1160-9. doi: 10.1016/j.bpj.2009.12.4276.

Abstract

NMDA receptors are heteromeric glutamate-gated channels composed of GluN1 and GluN2 subunits. Receptor isoforms that differ in their GluN2-subunit type (A-D) are expressed differentially throughout the central nervous system and have distinct kinetic properties in recombinant systems. How specific receptor isoforms contribute to the functions generally attributed to NMDA receptors remains unknown, due in part to the incomplete functional characterization of individual receptor types and unclear molecular composition of native receptors. We examined the stationary gating kinetics of individual rat recombinant GluN1/GluN2B receptors in cell-attached patches of transiently transfected HEK293 cells and used kinetic analyses and modeling to describe the full range of this receptor's gating behaviors. We found that, like GluN1/GluN2A receptors, GluN1/GluN2B receptors have three gating modes that are distinguishable by their mean open durations. However, for GluN1/GluN2B receptors, the modes also differed markedly in their mean closed durations and thus generated a broader range of open probabilities. We also found that regardless of gating mode, glutamate dissociation occurred approximately 4-fold more slowly (k(-) = 15 s(-1)) compared to that observed in GluN1/GluN2A receptors. On the basis of these results, we suggest that slow glutamate dissociation and modal gating underlie the long heterogeneous activations of GluN1/GluN2B receptors.

摘要

NMDA 受体是由 GluN1 和 GluN2 亚基组成的异源谷氨酸门控通道。在中枢神经系统中,不同 GluN2 亚基类型(A-D)的受体亚型表达不同,在重组系统中具有不同的动力学特性。由于特定受体亚型如何对通常归因于 NMDA 受体的功能做出贡献尚不清楚,部分原因是对单个受体类型的功能表征不完全,以及对天然受体的分子组成不清楚。我们在瞬时转染的 HEK293 细胞的细胞附着斑中检查了单个大鼠重组 GluN1/GluN2B 受体的静止门控动力学,并使用动力学分析和建模来描述该受体的全范围门控行为。我们发现,与 GluN1/GluN2A 受体一样,GluN1/GluN2B 受体具有三种门控模式,可通过其平均开放持续时间来区分。然而,对于 GluN1/GluN2B 受体,这些模式在平均关闭持续时间上也有明显差异,因此产生了更宽的开放概率范围。我们还发现,无论门控模式如何,谷氨酸的解离速度都比在 GluN1/GluN2A 受体中观察到的速度慢约 4 倍(k(-) = 15 s(-1))。基于这些结果,我们提出缓慢的谷氨酸解离和模态门控是 GluN1/GluN2B 受体的长异质激活的基础。

相似文献

1
Stationary gating of GluN1/GluN2B receptors in intact membrane patches.
Biophys J. 2010 Apr 7;98(7):1160-9. doi: 10.1016/j.bpj.2009.12.4276.
2
Effects of ethanol on GluN1/GluN2A and GluN1/GluN2B NMDA receptor-ion channel gating kinetics.
Alcohol Clin Exp Res. 2022 Dec;46(12):2203-2213. doi: 10.1111/acer.14965. Epub 2022 Nov 9.
3
Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors.
Neuron. 2014 Mar 5;81(5):1084-1096. doi: 10.1016/j.neuron.2014.01.035.
4
Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits.
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6942-E6951. doi: 10.1073/pnas.1707752114. Epub 2017 Jul 31.
5
Mechanistic and structural determinants of NMDA receptor voltage-dependent gating and slow Mg2+ unblock.
J Neurosci. 2013 Feb 27;33(9):4140-50. doi: 10.1523/JNEUROSCI.3712-12.2013.
6
Properties of Triheteromeric -Methyl-d-Aspartate Receptors Containing Two Distinct GluN1 Isoforms.
Mol Pharmacol. 2018 May;93(5):453-467. doi: 10.1124/mol.117.111427. Epub 2018 Feb 26.
7
Separate intramolecular targets for protein kinase A control N-methyl-D-aspartate receptor gating and Ca2+ permeability.
J Biol Chem. 2014 Jul 4;289(27):18805-17. doi: 10.1074/jbc.M113.537282. Epub 2014 May 20.
8
Effect of ifenprodil on GluN1/GluN2B N-methyl-D-aspartate receptor gating.
Mol Pharmacol. 2013 Jan;83(1):9-21. doi: 10.1124/mol.112.080952. Epub 2012 Sep 24.
9
Ethanol inhibition of constitutively open N-methyl-D-aspartate receptors.
J Pharmacol Exp Ther. 2012 Jan;340(1):218-26. doi: 10.1124/jpet.111.187179. Epub 2011 Oct 17.
10
Local constraints in either the GluN1 or GluN2 subunit equally impair NMDA receptor pore opening.
J Gen Physiol. 2011 Aug;138(2):179-94. doi: 10.1085/jgp.201110623. Epub 2011 Jul 11.

引用本文的文献

1
Structural insights into NMDA receptor pharmacology.
Biochem Soc Trans. 2023 Aug 31;51(4):1713-1731. doi: 10.1042/BST20230122.
2
Complex functional phenotypes of NMDA receptor disease variants.
Mol Psychiatry. 2022 Dec;27(12):5113-5123. doi: 10.1038/s41380-022-01774-6. Epub 2022 Sep 18.
3
Membrane Stretch Gates NMDA Receptors.
J Neurosci. 2022 Jul 20;42(29):5672-5680. doi: 10.1523/JNEUROSCI.0350-22.2022. Epub 2022 Jun 15.
4
Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels.
Pharmacol Rev. 2021 Oct;73(4):298-487. doi: 10.1124/pharmrev.120.000131.
7
Palmitoylation Controls NMDA Receptor Function and Steroid Sensitivity.
J Neurosci. 2021 Mar 10;41(10):2119-2134. doi: 10.1523/JNEUROSCI.2654-20.2021. Epub 2021 Feb 1.
8
Cholesterol modulates presynaptic and postsynaptic properties of excitatory synaptic transmission.
Sci Rep. 2020 Jul 28;10(1):12651. doi: 10.1038/s41598-020-69454-5.
9
Structural Basis of Functional Transitions in Mammalian NMDA Receptors.
Cell. 2020 Jul 23;182(2):357-371.e13. doi: 10.1016/j.cell.2020.05.052. Epub 2020 Jun 30.
10
Hydroxynorketamine Blocks -Methyl-d-Aspartate Receptor Currents by Binding to Closed Receptors.
Mol Pharmacol. 2020 Sep;98(3):203-210. doi: 10.1124/mol.120.119784. Epub 2020 Jun 29.

本文引用的文献

1
Biophysics and structure of the patch and the gigaseal.
Biophys J. 2009 Aug 5;97(3):738-47. doi: 10.1016/j.bpj.2009.05.018.
2
Kinetic basis of partial agonism at NMDA receptors.
Nat Neurosci. 2009 Sep;12(9):1114-20. doi: 10.1038/nn.2361. Epub 2009 Aug 2.
3
Pregnanolone sulfate promotes desensitization of activated NMDA receptors.
J Neurosci. 2009 May 27;29(21):6819-27. doi: 10.1523/JNEUROSCI.0281-09.2009.
4
CaMKII-induced shift in modal gating explains L-type Ca(2+) current facilitation: a modeling study.
Biophys J. 2009 Mar 4;96(5):1770-85. doi: 10.1016/j.bpj.2008.11.055.
5
Distinct gating modes determine the biphasic relaxation of NMDA receptor currents.
Nat Neurosci. 2008 Dec;11(12):1373-5. doi: 10.1038/nn.2214. Epub 2008 Oct 26.
6
Activation of recombinant NR1/NR2C NMDA receptors.
J Physiol. 2008 Sep 15;586(18):4425-39. doi: 10.1113/jphysiol.2008.158634. Epub 2008 Jul 17.
7
NMDA receptor desensitization regulated by direct binding to PDZ1-2 domains of PSD-95.
J Neurophysiol. 2008 Jun;99(6):3052-62. doi: 10.1152/jn.90301.2008. Epub 2008 Apr 9.
8
Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels.
J Gen Physiol. 2007 Dec;130(6):631-45. doi: 10.1085/jgp.200709859. Epub 2007 Nov 12.
9
Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors.
Mol Pharmacol. 2007 Oct;72(4):907-20. doi: 10.1124/mol.107.037333. Epub 2007 Jul 10.
10
NMDA receptor function: subunit composition versus spatial distribution.
Cell Tissue Res. 2006 Nov;326(2):439-46. doi: 10.1007/s00441-006-0273-6. Epub 2006 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验