Suppr超能文献

MRI 引导介入中活性设备的可视化和自动切片重定位(“SnapTo”)。

Visualization of active devices and automatic slice repositioning ("SnapTo") for MRI-guided interventions.

机构信息

Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Magn Reson Med. 2010 Apr;63(4):1070-9. doi: 10.1002/mrm.22307.

Abstract

The accurate visualization of interventional devices is crucial for the safety and effectiveness of MRI-guided interventional procedures. In this paper, we introduce an improvement to the visualization of active devices. The key component is a fast, robust method ("CurveFind") that reconstructs the three-dimensional trajectory of the device from projection images in a fraction of a second. CurveFind is an iterative prediction-correction algorithm that acts on a product of orthogonal projection images. By varying step size and search direction, it is robust to signal inhomogeneities. At the touch of a key, the imaged slice is repositioned to contain the relevant section of the device ("SnapTo"), the curve of the device is plotted in a three-dimensional display, and the point on a target slice, which the device will intersect, is displayed. These features have been incorporated into a real-time MRI system. Experiments in vitro and in vivo (in a pig) have produced successful results using a variety of single- and multichannel devices designed to produce both spatially continuous and discrete signals. CurveFind is typically able to reconstruct the device curve, with an average error of approximately 2 mm, even in the case of complex geometries.

摘要

准确显示介入设备对于 MRI 引导介入手术的安全性和有效性至关重要。本文提出了一种改进的主动设备可视化方法。关键组件是一种快速、鲁棒的方法(“CurveFind”),可在几分之一秒内从投影图像中重建设备的三维轨迹。CurveFind 是一种迭代预测校正算法,作用于正交投影图像的乘积上。通过改变步长和搜索方向,它对信号非均匀性具有鲁棒性。只需点击一下键,即可重新定位成像切片以包含设备的相关部分(“SnapTo”),在三维显示器上绘制设备曲线,并显示设备将与之相交的目标切片上的点。这些功能已被集成到实时 MRI 系统中。在体外和体内(猪)进行的实验中,使用各种设计用于产生空间连续和离散信号的单通道和多通道设备取得了成功的结果。CurveFind 通常能够重建设备曲线,平均误差约为 2 毫米,即使在复杂的几何形状下也是如此。

相似文献

6
Rapid freehand MR-guided percutaneous needle interventions: an image-based approach to improve workflow and feasibility.
J Magn Reson Imaging. 2013 May;37(5):1202-12. doi: 10.1002/jmri.23894. Epub 2013 Jan 18.
7
A multielement RF coil for MRI guidance of interventional devices.
J Magn Reson Imaging. 2001 Jul;14(1):56-62. doi: 10.1002/jmri.1151.
8
Dynamic coil selection for real-time imaging in interventional MRI.
Magn Reson Med. 2006 Nov;56(5):1156-62. doi: 10.1002/mrm.21028.
9
Instrument visualization using conventional and compressed sensing SEMAC for interventional MRI at 3T.
J Magn Reson Imaging. 2018 May;47(5):1306-1315. doi: 10.1002/jmri.25858. Epub 2017 Sep 21.
10
Reverse polarized inductive coupling to transmit and receive radiofrequency coil arrays.
Magn Reson Med. 2012 Feb;67(2):446-56. doi: 10.1002/mrm.23030. Epub 2011 Jun 7.

引用本文的文献

1
Current State of MRI-Guided Endovascular Arterial Interventions: A Systematic Review of Preclinical and Clinical Studies.
J Magn Reson Imaging. 2022 Nov;56(5):1322-1342. doi: 10.1002/jmri.28205. Epub 2022 Apr 14.
3
A Holographic Augmented Reality Interface for Visualizing of MRI Data and Planning of Neurosurgical Procedures.
J Digit Imaging. 2021 Aug;34(4):1014-1025. doi: 10.1007/s10278-020-00412-3. Epub 2021 May 23.
4
Real-time device tracking under MRI using an acousto-optic active marker.
Magn Reson Med. 2021 May;85(5):2904-2914. doi: 10.1002/mrm.28625. Epub 2020 Dec 21.
5
Safe guidewire visualization using the modes of a PTx transmit array MR system.
Magn Reson Med. 2020 Jun;83(6):2343-2355. doi: 10.1002/mrm.28069. Epub 2019 Nov 13.
6
Positive contrast spiral imaging for visualization of commercial nitinol guidewires with reduced heating.
J Cardiovasc Magn Reson. 2015 Dec 22;17:114. doi: 10.1186/s12968-015-0219-9.
7
Magnetic Resonance Sequences and Rapid Acquisition for MR-Guided Interventions.
Magn Reson Imaging Clin N Am. 2015 Nov;23(4):669-79. doi: 10.1016/j.mric.2015.05.006. Epub 2015 Aug 12.
8
Magnetic Resonance-guided Active Catheter Tracking.
Magn Reson Imaging Clin N Am. 2015 Nov;23(4):579-89. doi: 10.1016/j.mric.2015.05.009. Epub 2015 Jul 6.
10
MRI-guided vascular access with an active visualization needle.
J Magn Reson Imaging. 2011 Nov;34(5):1159-66. doi: 10.1002/jmri.22715.

本文引用的文献

1
Active two-channel 0.035'' guidewire for interventional cardiovascular MRI.
J Magn Reson Imaging. 2009 Aug;30(2):461-5. doi: 10.1002/jmri.21844.
3
A catheter tracking method using reverse polarization for MR-guided interventions.
Magn Reson Med. 2007 Dec;58(6):1224-31. doi: 10.1002/mrm.21419.
5
Tracking planar orientations of active MRI needles.
J Magn Reson Imaging. 2007 Aug;26(2):386-91. doi: 10.1002/jmri.20960.
6
Cardiovascular interventional magnetic resonance imaging.
Circulation. 2005 Nov 8;112(19):3009-17. doi: 10.1161/CIRCULATIONAHA.104.531368.
7
Development of a 0.014-inch magnetic resonance imaging guidewire.
Magn Reson Med. 2005 Apr;53(4):986-90. doi: 10.1002/mrm.20384.
8
Multiple field of view MR fluoroscopy.
Magn Reson Med. 2002 Jan;47(1):53-60. doi: 10.1002/mrm.10035.
9
Intravascular magnetic resonance imaging using a loopless catheter antenna.
Magn Reson Med. 1997 Jan;37(1):112-8. doi: 10.1002/mrm.1910370116.
10
Real-time position monitoring of invasive devices using magnetic resonance.
Magn Reson Med. 1993 Mar;29(3):411-5. doi: 10.1002/mrm.1910290322.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验