Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, 14163, Berlin, Germany.
Vet Pathol. 2010 May;47(3):446-54. doi: 10.1177/0300985810363904. Epub 2010 Apr 7.
Several markers of malignancy have been proposed for canine mammary tumors on the mRNA and protein levels. However, their association with tumor malignancy applies only for mean values of large groups of tumors, but no single marker identified to date can be used to reliably predict malignancy for individual tumors. A quantitative real-time reverse transcription polymerase chain reaction array was established to quantify the expression levels of 49 genes relevant to carcinogenesis in laser-microdissected tumor cells of 10 benign and 13 metastatic canine mammary tumors. Analysis of variance and discriminant analysis were used to identify relevant gene expression patterns that differentiate adenomas from metastatic carcinomas and their lymph node metastases. Seventeen genes with significant (P < .05) differences in gene expression levels between benign and malignant tumors were identified--including ERBB1, SLIT2, progesterone receptor, MIG6, SATB1, and SMAD6--but correct classification of each tumor as benign or malignant was impossible on the basis of any of these genes alone. However, the combined expression patterns of BMP2, LTBP4, and DERL1 (Derlin-1) correctly classified each individual tumor as benign or malignant. This pilot study identified a complex mRNA expression pattern of 3 genes that was able to identify malignancy in laser-microdissected tumor cells for each individual tumor, instead of group means as used in previous studies.
已经在 mRNA 和蛋白质水平上提出了几种用于犬乳腺肿瘤的恶性肿瘤标志物。 然而,它们与肿瘤恶性程度的关联仅适用于大量肿瘤的平均值,但是迄今为止尚未确定可以用于可靠预测单个肿瘤恶性程度的单个标志物。 建立了定量实时逆转录聚合酶链反应阵列,以定量分析激光微切割的 10 个良性和 13 个转移性犬乳腺肿瘤的肿瘤细胞中与致癌作用相关的 49 个基因的表达水平。 方差分析和判别分析用于识别可区分腺瘤与转移性癌及其淋巴结转移的相关基因表达模式。 在良性和恶性肿瘤之间的基因表达水平存在显着差异(P <.05)的 17 个基因被鉴定出来-包括 ERBB1、SLIT2、孕激素受体、MIG6、SATB1 和 SMAD6-但是仅基于这些基因中的任何一个都不可能正确分类每个肿瘤为良性或恶性。 但是,BMP2、LTBP4 和 DERL1(Derlin-1)的联合表达模式可以正确地将每个肿瘤分别分类为良性或恶性。 这项初步研究确定了 3 个基因的复杂 mRNA 表达模式,该模式能够识别激光微切割的肿瘤细胞中的恶性肿瘤,而不是以前研究中使用的组平均值。