Belmamoune M, Potikanond D, Verbeek F J
Section Imaging and BioInformatics, Leiden Institute of Advanced Computer Science Leiden University, The Netherlands.
J Integr Bioinform. 2010 Mar 25;7(3):481. doi: 10.2390/biecoll-jib-2010-128.
Mining patterns of gene expression provides a crucial approach in discovering knowledge such as finding genetic networks that underpin the embryonic development. Analysis of mining results and evaluation of their relevance in the domain remains a major concern. In this paper we describe our explorative studies in support of solutions to facilitate the analysis and interpretation of mining results. In our particular case we describe a solution that is found in the extension of the Gene Expression Management System (GEMS), i.e. an integrative framework for spatio-temporal organization of gene expression patterns of zebrafish to a framework supporting data mining, data analysis and patterns interpretation As a proof of principle, the GEMS has been equipped with data mining functionality suitable for spatio-temporal tracking, thereby generating added value to the submission of data for data mining and analysis. The analysis of the genetic networks is based on the availability of domain ontologies which dynamically provides meaning to the discovered patterns of gene expression data. Combination of data mining with the already presently available capabilities of GEMS will significantly augment current data processing and functional analysis strategies.
挖掘基因表达模式为发现诸如支撑胚胎发育的基因网络等知识提供了一种关键方法。对挖掘结果的分析及其在该领域相关性的评估仍然是一个主要关注点。在本文中,我们描述了我们的探索性研究,以支持有助于分析和解释挖掘结果的解决方案。在我们的特定案例中,我们描述了一种在基因表达管理系统(GEMS)扩展中找到的解决方案,即从斑马鱼基因表达模式的时空组织的综合框架扩展到支持数据挖掘、数据分析和模式解释的框架。作为原理验证,GEMS已具备适用于时空追踪的数据挖掘功能,从而为提交用于数据挖掘和分析的数据创造了附加值。基因网络的分析基于领域本体的可用性,该本体动态地为发现的基因表达数据模式赋予意义。将数据挖掘与GEMS目前已有的功能相结合,将显著增强当前的数据处理和功能分析策略。