Suppr超能文献

在综合数据库框架中挖掘和分析基因表达的时空模式。

Mining and analysing spatio-temporal patterns of gene expression in an integrative database framework.

作者信息

Belmamoune M, Potikanond D, Verbeek F J

机构信息

Section Imaging and BioInformatics, Leiden Institute of Advanced Computer Science Leiden University, The Netherlands.

出版信息

J Integr Bioinform. 2010 Mar 25;7(3):481. doi: 10.2390/biecoll-jib-2010-128.

Abstract

Mining patterns of gene expression provides a crucial approach in discovering knowledge such as finding genetic networks that underpin the embryonic development. Analysis of mining results and evaluation of their relevance in the domain remains a major concern. In this paper we describe our explorative studies in support of solutions to facilitate the analysis and interpretation of mining results. In our particular case we describe a solution that is found in the extension of the Gene Expression Management System (GEMS), i.e. an integrative framework for spatio-temporal organization of gene expression patterns of zebrafish to a framework supporting data mining, data analysis and patterns interpretation As a proof of principle, the GEMS has been equipped with data mining functionality suitable for spatio-temporal tracking, thereby generating added value to the submission of data for data mining and analysis. The analysis of the genetic networks is based on the availability of domain ontologies which dynamically provides meaning to the discovered patterns of gene expression data. Combination of data mining with the already presently available capabilities of GEMS will significantly augment current data processing and functional analysis strategies.

摘要

挖掘基因表达模式为发现诸如支撑胚胎发育的基因网络等知识提供了一种关键方法。对挖掘结果的分析及其在该领域相关性的评估仍然是一个主要关注点。在本文中,我们描述了我们的探索性研究,以支持有助于分析和解释挖掘结果的解决方案。在我们的特定案例中,我们描述了一种在基因表达管理系统(GEMS)扩展中找到的解决方案,即从斑马鱼基因表达模式的时空组织的综合框架扩展到支持数据挖掘、数据分析和模式解释的框架。作为原理验证,GEMS已具备适用于时空追踪的数据挖掘功能,从而为提交用于数据挖掘和分析的数据创造了附加值。基因网络的分析基于领域本体的可用性,该本体动态地为发现的基因表达数据模式赋予意义。将数据挖掘与GEMS目前已有的功能相结合,将显著增强当前的数据处理和功能分析策略。

相似文献

3
Towards knowledge-based gene expression data mining.迈向基于知识的基因表达数据挖掘。
J Biomed Inform. 2007 Dec;40(6):787-802. doi: 10.1016/j.jbi.2007.06.005. Epub 2007 Jun 21.
5
Data mining of gene expression data by fuzzy and hybrid fuzzy methods.利用模糊和混合模糊方法对基因表达数据进行数据挖掘。
IEEE Trans Inf Technol Biomed. 2010 Jan;14(1):23-9. doi: 10.1109/TITB.2009.2033590. Epub 2009 Oct 20.
9
Discovering metric temporal constraint networks on temporal databases.发现时态数据库上的度量时态约束网络。
Artif Intell Med. 2013 Jul;58(3):139-54. doi: 10.1016/j.artmed.2013.03.006. Epub 2013 May 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验