Suppr超能文献

用于微小RNA研究的靶标预测算法的比较与整合

Comparison and integration of target prediction algorithms for microRNA studies.

作者信息

Zhang Yanju, Verbeek Fons J

机构信息

Section Imaging and BioInformatics, Leiden Institute of Advanced Computer Science,Leiden University, The Netherlands.

出版信息

J Integr Bioinform. 2010 Mar 25;7(3):474. doi: 10.2390/biecoll-jib-2010-127.

Abstract

microRNAs are short RNA fragments that have the capacity of regulating hundreds of target gene expression. Currently, due to lack of high-throughput experimental methods for miRNA target identification, a collection of computational target prediction approaches have been developed. However, these approaches deal with different features or factors are weighted differently resulting in diverse range of predictions. The prediction accuracy remains uncertain. In this paper, three commonly used target prediction algorithms are evaluated and further integrated using algorithm combination, ranking aggregation and Bayesian Network classification. Our results revealed that each individual prediction algorithm displays its advantages as was shown on different test data sets. Among different integration strategies, the application of Bayesian Network classifier on the features calculated from multiple prediction methods significantly improved target prediction accuracy.

摘要

微小RNA是具有调控数百个靶基因表达能力的短RNA片段。目前,由于缺乏用于微小RNA靶标鉴定的高通量实验方法,已开发出一系列计算靶标预测方法。然而,这些方法处理不同特征或因素时权重不同,导致预测范围多样。预测准确性仍然不确定。本文评估了三种常用的靶标预测算法,并使用算法组合、排名聚合和贝叶斯网络分类进行进一步整合。我们的结果表明,每个单独的预测算法在不同的测试数据集上都显示出其优势。在不同的整合策略中,将贝叶斯网络分类器应用于从多种预测方法计算出的特征上,显著提高了靶标预测准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验