Suppr超能文献

多元逻辑回归中分离与多重共线性问题的一种解决方案。

A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

作者信息

Shen Jianzhao, Gao Sujuan

机构信息

Division of Biostatistics, Department of Medicine, Indiana University School of Medicine, 1050 Wishard Blvd. RG4101, Indianapolis, IN 46202-2872, USA.

出版信息

J Data Sci. 2008 Oct 1;6(4):515-531.

Abstract

In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

摘要

在痴呆筛查测试中,可使用多元逻辑回归来选择项目以缩短现有的筛查测试。然而,由于大量高度相关项目导致的分离和多重共线性问题,此类逻辑回归模型的最大似然估计常常会出现严重偏差甚至不存在。弗思(1993年,《生物统计学》,80(1),27 - 38)提出了一种广义线性模型的惩罚似然估计器,结果表明它能减少偏差和不存在问题。岭回归已用于逻辑回归,以在多重共线性情况下稳定估计。然而,两者都无法解决对方的问题。在本文中,我们提出一种将弗思的惩罚似然方程与一个岭参数相结合的双重惩罚最大似然估计器。我们进行了一项模拟研究,评估双重惩罚似然估计器在中小样本量情况下的实证性能。我们使用来自一项基于社区的痴呆研究的当前筛查数据展示了所提出的方法。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验