Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
PLoS One. 2010 Apr 1;5(4):e9970. doi: 10.1371/journal.pone.0009970.
Coordinated gene transcript levels across tissues (denoted "gene synchrony") reflect converging influences of genetic, biochemical and environmental factors; hence they are informative of the biological state of an individual. So could brain gene synchrony also integrate the multiple factors engaged in neuropsychiatric disorders and reveal underlying pathologies? Using bootstrapped Pearson correlation for transcript levels for the same genes across distinct brain areas, we report robust gene transcript synchrony between the amygdala and cingulate cortex in the human postmortem brain of normal control subjects (n = 14; Control/Permutated data, p<0.000001). Coordinated expression was confirmed across distinct prefrontal cortex areas in a separate cohort (n = 19 subjects) and affected different gene sets, potentially reflecting regional network- and function-dependent transcriptional programs. Genewise regional transcript coordination was independent of age-related changes and array technical parameters. Robust shifts in amygdala-cingulate gene synchrony were observed in subjects with major depressive disorder (MDD, denoted here "depression") (n = 14; MDD/Permutated data, p<0.000001), significantly affecting between 100 and 250 individual genes (10-30% false discovery rate). Biological networks and signal transduction pathways corresponding to the identified gene set suggested putative dysregulated functions for several hormone-type factors previously implicated in depression (insulin, interleukin-1, thyroid hormone, estradiol and glucocorticoids; p<0.01 for association with depression-related networks). In summary, we showed that coordinated gene expression across brain areas may represent a novel molecular probe for brain structure/function that is sensitive to disease condition, suggesting the presence of a distinct and integrated hormone-mediated corticolimbic homeostatic, although maladaptive and pathological, state in major depression.
组织间协调的基因转录水平(表示为“基因同步”)反映了遗传、生化和环境因素的共同影响;因此,它们可以提供个体的生物学状态信息。那么,大脑基因同步是否也可以整合参与神经精神疾病的多种因素,并揭示潜在的病理学?我们使用跨不同大脑区域的相同基因的转录水平的自举 Pearson 相关性,报告了正常对照受试者(n=14;Control/Permutated data,p<0.000001)的人类死后大脑的杏仁核和扣带回之间的稳健基因转录同步。在另一个队列中(n=19 个受试者),我们在不同的前额叶皮层区域中确认了跨区域的协调表达,并影响了不同的基因集,这可能反映了区域网络和功能依赖的转录程序。基因区域转录协调与年龄相关的变化和数组技术参数无关。在患有重度抑郁症(MDD,这里表示为“抑郁”)的受试者中观察到杏仁核-扣带回基因同步的稳健变化(n=14;MDD/Permutated data,p<0.000001),显著影响了 100 到 250 个个体基因(10-30%假发现率)。与鉴定的基因集相对应的生物网络和信号转导途径表明,几种先前涉及抑郁症的激素样因子(胰岛素、白细胞介素-1、甲状腺激素、雌二醇和糖皮质激素)可能存在失调功能(与抑郁相关网络相关,p<0.01)。总之,我们表明,跨大脑区域的协调基因表达可能代表一种新的分子探针,用于对疾病状况敏感的大脑结构/功能,这表明存在一种独特的、整合的激素介导的皮质边缘稳态,尽管是适应不良和病理性的,但在重度抑郁症中存在。