Suppr超能文献

高通量并行 SELEX 技术用于鉴定人转录因子结合特异性。

Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities.

机构信息

Department of Molecular Medicine, National Public Health Institute (KTL) and Genome-Scale Biology Program, Institute of Biomedicine and High Throughput Center, University of Helsinki, Biomedicum, Helsinki, Finland.

出版信息

Genome Res. 2010 Jun;20(6):861-73. doi: 10.1101/gr.100552.109. Epub 2010 Apr 8.

Abstract

The genetic code-the binding specificity of all transfer-RNAs--defines how protein primary structure is determined by DNA sequence. DNA also dictates when and where proteins are expressed, and this information is encoded in a pattern of specific sequence motifs that are recognized by transcription factors. However, the DNA-binding specificity is only known for a small fraction of the approximately 1400 human transcription factors (TFs). We describe here a high-throughput method for analyzing transcription factor binding specificity that is based on systematic evolution of ligands by exponential enrichment (SELEX) and massively parallel sequencing. The method is optimized for analysis of large numbers of TFs in parallel through the use of affinity-tagged proteins, barcoded selection oligonucleotides, and multiplexed sequencing. Data are analyzed by a new bioinformatic platform that uses the hundreds of thousands of sequencing reads obtained to control the quality of the experiments and to generate binding motifs for the TFs. The described technology allows higher throughput and identification of much longer binding profiles than current microarray-based methods. In addition, as our method is based on proteins expressed in mammalian cells, it can also be used to characterize DNA-binding preferences of full-length proteins or proteins requiring post-translational modifications. We validate the method by determining binding specificities of 14 different classes of TFs and by confirming the specificities for NFATC1 and RFX3 using ChIP-seq. Our results reveal unexpected dimeric modes of binding for several factors that were thought to preferentially bind DNA as monomers.

摘要

遗传密码——所有转移 RNA 的结合特异性——定义了蛋白质一级结构如何由 DNA 序列决定。DNA 还决定了蛋白质何时何地表达,而这些信息编码在特定序列基序的模式中,这些基序被转录因子识别。然而,只有大约 1400 个人类转录因子(TF)中的一小部分的 DNA 结合特异性是已知的。我们在这里描述了一种基于配体系统进化指数富集(SELEX)和大规模平行测序的转录因子结合特异性的高通量分析方法。该方法通过使用亲和标记蛋白、条形码选择寡核苷酸和多重测序,针对大量 TF 进行平行分析进行了优化。通过使用数百个测序读取来控制实验质量并为 TF 生成结合基序的新生物信息学平台来分析数据。与当前基于微阵列的方法相比,该描述的技术允许更高的通量和识别更长的结合谱。此外,由于我们的方法基于哺乳动物细胞中表达的蛋白质,因此它也可用于表征全长蛋白质或需要翻译后修饰的蛋白质的 DNA 结合偏好性。我们通过确定 14 种不同类别的 TF 的结合特异性,并通过使用 ChIP-seq 确认 NFATC1 和 RFX3 的特异性来验证该方法。我们的结果揭示了几个被认为优先作为单体结合 DNA 的因子的意想不到的二聚结合模式。

相似文献

1
Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities.
Genome Res. 2010 Jun;20(6):861-73. doi: 10.1101/gr.100552.109. Epub 2010 Apr 8.
2
SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors.
Methods Mol Biol. 2017;1629:67-82. doi: 10.1007/978-1-4939-7125-1_6.
4
DNA-binding specificities of human transcription factors.
Cell. 2013 Jan 17;152(1-2):327-39. doi: 10.1016/j.cell.2012.12.009.
5
[DNA-binding profiles of mammalian transcription factors].
Yi Chuan. 2012 Aug;34(8):950-68. doi: 10.3724/sp.j.1005.2012.00950.
6
In vitro DNA-binding profile of transcription factors: methods and new insights.
J Endocrinol. 2011 Jul;210(1):15-27. doi: 10.1530/JOE-11-0010. Epub 2011 Mar 9.
10
High-throughput SELEX determination of DNA sequences bound by transcription factors in vitro.
Methods Mol Biol. 2012;786:51-63. doi: 10.1007/978-1-61779-292-2_3.

引用本文的文献

1
Multiple overlapping binding sites determine transcription factor occupancy.
Nature. 2025 Sep 3. doi: 10.1038/s41586-025-09472-3.
3
Interpretable protein-DNA interactions captured by structure-sequence optimization.
Elife. 2025 Jul 17;14:RP105565. doi: 10.7554/eLife.105565.
6
Single-molecule parallel analysis for rapid exploration of sequence space.
Nat Protoc. 2025 Jun 4. doi: 10.1038/s41596-025-01196-y.
7
Recent advances in designing synthetic plant regulatory modules.
Front Plant Sci. 2025 Apr 2;16:1567659. doi: 10.3389/fpls.2025.1567659. eCollection 2025.
8
9
Widespread variation in molecular interactions and regulatory properties among transcription factor isoforms.
Mol Cell. 2025 Apr 3;85(7):1445-1466.e13. doi: 10.1016/j.molcel.2025.03.004. Epub 2025 Mar 26.
10
Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors.
ACS Synth Biol. 2025 Jan 17;14(1):72-86. doi: 10.1021/acssynbio.4c00689. Epub 2024 Dec 22.

本文引用的文献

1
Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo.
EMBO J. 2010 Jul 7;29(13):2147-60. doi: 10.1038/emboj.2010.106. Epub 2010 Jun 1.
2
Inferring binding energies from selected binding sites.
PLoS Comput Biol. 2009 Dec;5(12):e1000590. doi: 10.1371/journal.pcbi.1000590. Epub 2009 Dec 4.
4
The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer.
Nat Genet. 2009 Aug;41(8):882-4. doi: 10.1038/ng.403. Epub 2009 Jun 28.
6
Diversity and complexity in DNA recognition by transcription factors.
Science. 2009 Jun 26;324(5935):1720-3. doi: 10.1126/science.1162327. Epub 2009 May 14.
7
Histone modifications at human enhancers reflect global cell-type-specific gene expression.
Nature. 2009 May 7;459(7243):108-12. doi: 10.1038/nature07829. Epub 2009 Mar 18.
8
A census of human transcription factors: function, expression and evolution.
Nat Rev Genet. 2009 Apr;10(4):252-63. doi: 10.1038/nrg2538.
9
Blimp-1/PRDM1 mediates transcriptional suppression of the NLR gene NLRP12/Monarch-1.
J Immunol. 2009 Mar 1;182(5):2948-58. doi: 10.4049/jimmunol.0801692.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验