Suppr超能文献

NetCTLpan:针对 pan-MHC 类 I 通路表位的预测。

NetCTLpan: pan-specific MHC class I pathway epitope predictions.

机构信息

Department of Systems Biology DTU, Building 208, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, 2800, Denmark.

出版信息

Immunogenetics. 2010 Jun;62(6):357-68. doi: 10.1007/s00251-010-0441-4. Epub 2010 Apr 9.

Abstract

Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/.

摘要

免疫肽的可靠预测在合理疫苗设计中至关重要,并可以最大程度地减少识别表位所需的实验工作量。在这项工作中,我们描述了一种泛特异性主要组织相容性复合体(MHC)I 类表位预测器 NetCTLpan。该方法将蛋白酶体切割、抗原加工相关转运体(TAP)转运效率和 MHC I 类结合亲和力的预测整合到 MHC I 类途径可能性评分中,是 NetCTL 的改进和扩展版本。NetCTLpan 方法可对所有具有已知蛋白质序列的 MHC I 分子进行预测,并允许预测 8、9、10 和 11 -mer 肽。为了满足低假阳性率的需求,该方法经过优化以实现高特异性。该方法在大量实验鉴定的 MHC I 配体和细胞毒性 T 淋巴细胞(CTL)表位数据集上进行了训练和验证。据报道,MHC 分子在 TAP 转运和蛋白酶体切割方面存在差异依赖性。在这里,我们没有发现任何一致的 MHC 依赖性迹象,并且 NetCTLpan 方法为所有 MHC 分子固定了蛋白酶体切割和 TAP 转运的权重。NetCTLpan 方法的预测性能优于其他最先进的 CTL 表位预测方法。我们的结果进一步证实了在识别 MHC I 表位时使用全型人类白细胞抗原限制信息的重要性。与 NetMHCpan 和 NetCTL 方法相比,使用 NetCTLpan 方法可以将识别 90%新表位的实验工作量分别减少 15%和 40%。该方法和基准数据集可在 http://www.cbs.dtu.dk/services/NetCTLpan/ 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/2875469/97835610849a/251_2010_441_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验