Hoof Ilka, Peters Bjoern, Sidney John, Pedersen Lasse Eggers, Sette Alessandro, Lund Ole, Buus Søren, Nielsen Morten
Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, 2800, Lyngby, Denmark.
Immunogenetics. 2009 Jan;61(1):1-13. doi: 10.1007/s00251-008-0341-z. Epub 2008 Nov 12.
Binding of peptides to major histocompatibility complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC genomic region (called HLA) is extremely polymorphic comprising several thousand alleles, each encoding a distinct MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized. Likewise, only a limited number of chimpanzee and rhesus macaque MHC class I molecules have been characterized experimentally. Here, we present NetMHCpan-2.0, a method that generates quantitative predictions of the affinity of any peptide-MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I molecules. We show that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and HLA-G. Moreover, NetMHCpan-2.0 is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules. The power of NetMHCpan-2.0 to guide immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 nM. The high performance of NetMHCpan-2.0 for non-human primates documents the method's ability to provide broad allelic coverage also beyond human MHC molecules. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.
肽与主要组织相容性复合体(MHC)分子的结合是细胞免疫系统识别病原体过程中最具选择性的步骤。人类MHC基因组区域(称为HLA)具有极高的多态性,包含数千个等位基因,每个等位基因编码一种独特的MHC分子。迄今为止已鉴定出的大多数HLA等位基因潜在的独特特异性仍未得到表征。同样,仅通过实验表征了有限数量的黑猩猩和恒河猴MHC I类分子。在此,我们介绍NetMHCpan-2.0,这是一种可对任何肽-MHC I类相互作用的亲和力进行定量预测的方法。NetMHCpan-2.0已在迄今最大的一组可用定量MHC结合数据上进行训练,这些数据涵盖HLA-A和HLA-B,以及黑猩猩、恒河猴、大猩猩和小鼠的MHC I类分子。我们表明,NetMHCpan-2.0方法能够准确预测与未表征的HLA分子(包括HLA-C和HLA-G)的结合。此外,NetMHCpan-2.0被证明能够准确预测肽与黑猩猩和猕猴MHC I类分子的结合。展示了NetMHCpan-2.0在指导免疫学家解释大规模远交群体中的细胞免疫反应方面的能力。此外,我们使用NetMHCpan-2.0预测猪MHC I类分子SLA-1*0401的潜在结合肽。93%的预测肽被证明结合强度高于500 nM。NetMHCpan-2.0在非人类灵长类动物中的高性能证明了该方法能够提供超出人类MHC分子的广泛等位基因覆盖范围。该方法可在http://www.cbs.dtu.dk/services/NetMHCpan获取。