Suppr超能文献

模拟雾天条件下跟车性能随年龄相关的下降。

Age-related declines in car following performance under simulated fog conditions.

机构信息

Department of Psychology, University of California-Riverside, Riverside, CA 92521, USA.

出版信息

Accid Anal Prev. 2010 May;42(3):818-26. doi: 10.1016/j.aap.2009.04.023.

Abstract

The present study examined age-related differences in car following performance when contrast of the driving scene was reduced by simulated fog. Older (mean age of 72.6) and younger (mean age of 21.1) drivers were presented with a car following scenario in a simulator in which a lead vehicle (LV) varied speed according to a sum of three sine wave functions. Drivers were shown an initial following distance of 18 m and were asked to maintain headway distance by controlling speed to match changes in LV speed. Five simulated fog conditions were examined ranging from a no fog condition (contrast of 0.55) to a high fog condition (contrast of 0.03). Average LV speed varied across trials (40, 60, or 80 km/h). The results indicated age-related declines in car following performance for both headway distance and RMS (root mean square) error in matching speed. The greatest decline occurred at moderate speeds under the highest fog density condition, with older drivers maintaining a headway distance that was 21% closer than younger drivers. At higher speeds older drivers maintained a greater headway distance than younger drivers. These results suggest that older drivers may be at greater risk for a collision under high fog density and moderate speeds.

摘要

本研究考察了模拟雾降低驾驶场景对比度时,与年龄相关的跟车性能差异。在模拟器中,为老年(平均年龄 72.6 岁)和年轻(平均年龄 21.1 岁)驾驶员呈现了跟车场景,其中前车(LV)根据三个正弦波函数的总和改变速度。驾驶员被展示了初始跟随距离为 18 米,并被要求通过控制速度来匹配 LV 速度的变化来保持车距。检查了五个模拟雾条件,范围从无雾条件(对比度为 0.55)到高雾条件(对比度为 0.03)。平均 LV 速度在试验中变化(40、60 或 80 公里/小时)。结果表明,在头距和 RMS(均方根)误差方面,年龄与跟车性能呈下降趋势。在最高雾密度条件下,中等速度下的下降最大,老年驾驶员保持的车距比年轻驾驶员近 21%。在较高速度下,老年驾驶员保持的车距大于年轻驾驶员。这些结果表明,在高雾密度和中等速度下,老年驾驶员发生碰撞的风险可能更大。

相似文献

1
Age-related declines in car following performance under simulated fog conditions.
Accid Anal Prev. 2010 May;42(3):818-26. doi: 10.1016/j.aap.2009.04.023.
2
Speed choice and driving performance in simulated foggy conditions.
Accid Anal Prev. 2011 May;43(3):698-705. doi: 10.1016/j.aap.2010.10.014. Epub 2010 Dec 15.
3
Aging and the detection of imminent collisions under simulated fog conditions.
Accid Anal Prev. 2012 Nov;49:525-31. doi: 10.1016/j.aap.2012.03.029. Epub 2012 Apr 10.
6
Car following decisions under three visibility conditions and two speeds tested with a driving simulator.
Accid Anal Prev. 2007 Jan;39(1):106-16. doi: 10.1016/j.aap.2006.06.009. Epub 2006 Sep 7.
7
Optical information for car following: the driving by visual angle (DVA) model.
Hum Factors. 2007 Oct;49(5):878-96. doi: 10.1518/001872007X230235.
8
Can headway reduction in fog be explained by impaired perception of relative motion?
Hum Factors. 2009 Jun;51(3):378-92. doi: 10.1177/0018720809339621.
9
DIFFERENCES IN SIMULATED CAR FOLLOWING BEHAVIOR OF YOUNGER AND OLDER DRIVERS.
Proc Int Driv Symp Hum Factors Driv Assess Train Veh Des. 2009;2009:76-82.
10
Effects of connected vehicle-based variable speed limit under different foggy conditions based on simulated driving.
Accid Anal Prev. 2019 Jul;128:206-216. doi: 10.1016/j.aap.2019.04.020. Epub 2019 May 2.

引用本文的文献

1
Driving Behaviour in Depression Based on Subjective Evaluation and Data from a Driving Simulator.
Int J Environ Res Public Health. 2023 Apr 21;20(8):5609. doi: 10.3390/ijerph20085609.
2
The architecture of functional brain network modulated by driving during adverse weather conditions.
Cogn Neurodyn. 2023 Apr;17(2):547-553. doi: 10.1007/s11571-022-09825-y. Epub 2022 Jun 28.
4
Estimating time-to-contact when vision is impaired.
Sci Rep. 2021 Oct 27;11(1):21213. doi: 10.1038/s41598-021-00331-5.
5
Preliminary study on visual recognition under low visibility conditions caused by artificial dynamic smog.
Int J Ophthalmol. 2018 Nov 18;11(11):1821-1828. doi: 10.18240/ijo.2018.11.14. eCollection 2018.
6
Glaucoma and Driving Risk under Simulated Fog Conditions.
Transl Vis Sci Technol. 2016 Dec 14;5(6):15. doi: 10.1167/tvst.5.6.15. eCollection 2016 Dec.
8
Visual Acuity does not Moderate Effect Sizes of Higher-Level Cognitive Tasks.
Exp Aging Res. 2016;42(3):221-63. doi: 10.1080/0361073X.2016.1156964.
9
Measuring listening effort: driving simulator versus simple dual-task paradigm.
Ear Hear. 2014 Nov-Dec;35(6):623-32. doi: 10.1097/AUD.0000000000000079.
10
Aging and the detection of imminent collisions under simulated fog conditions.
Accid Anal Prev. 2012 Nov;49:525-31. doi: 10.1016/j.aap.2012.03.029. Epub 2012 Apr 10.

本文引用的文献

1
Aging and the perceptual organization of 3-D scenes.
Psychol Aging. 2008 Jun;23(2):342-352. doi: 10.1037/0882-7974.23.2.342.
2
Optical information for car following: the driving by visual angle (DVA) model.
Hum Factors. 2007 Oct;49(5):878-96. doi: 10.1518/001872007X230235.
3
The effects of aging on motion detection and direction identification.
Vision Res. 2007 Mar;47(6):799-809. doi: 10.1016/j.visres.2007.01.001. Epub 2007 Feb 7.
4
Effect of change in central lens thickness and lens shape on age-related decline in accommodation.
J Cataract Refract Surg. 2006 Nov;32(11):1897-8; author reply 1898. doi: 10.1016/j.jcrs.2006.05.034.
5
Car following decisions under three visibility conditions and two speeds tested with a driving simulator.
Accid Anal Prev. 2007 Jan;39(1):106-16. doi: 10.1016/j.aap.2006.06.009. Epub 2006 Sep 7.
6
Aging and the perception of 3-D shape from dynamic patterns of binocular disparity.
Percept Psychophys. 2006 Jan;68(1):94-101. doi: 10.3758/bf03193659.
7
Aging and the detection of observer and moving object collisions.
Psychol Aging. 2006 Mar;21(1):74-85. doi: 10.1037/0882-7974.21.1.74.
8
The role of visual attention in predicting driving impairment in older adults.
Psychol Aging. 2005 Dec;20(4):610-22. doi: 10.1037/0882-7974.20.4.610.
9
Aging reduces center-surround antagonism in visual motion processing.
Neuron. 2005 Feb 3;45(3):361-6. doi: 10.1016/j.neuron.2004.12.041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验