Suppr超能文献

利用 RANSAC 提高人体肝脏中基于飞行时间的剪切波速度重建方法的稳健性。

Improving the robustness of time-of-flight based shear wave speed reconstruction methods using RANSAC in human liver in vivo.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA.

出版信息

Ultrasound Med Biol. 2010 May;36(5):802-13. doi: 10.1016/j.ultrasmedbio.2010.02.007. Epub 2010 Apr 9.

Abstract

The stiffness of tissue can be quantified by measuring the shear wave speed (SWS) within the medium. Ultrasound is a real-time imaging modality capable of tracking the propagation of shear waves in soft tissue. Time-of-flight (TOF) methods have previously been shown to be effective for quantifying SWS from ultrasonically tracked displacements. However, the application of these methods to in vivo data is challenging due to the presence of additional sources of error, such as physiologic motion or spatial inhomogeneities in tissue. This article introduces the use of random sample consensus (RANSAC), a model fitting paradigm robust to the presence of gross outlier data, for estimating the SWS from ultrasonically tracked tissue displacements in vivo. SWS reconstruction is posed as a parameter estimation problem and the RANSAC solution to this problem is described. Simulations using synthetic TOF data show that RANSAC is capable of good stiffness reconstruction accuracy (mean error 0.5 kPa) and precision (standard deviation 0.6 kPa) over a range of shear stiffness (0.6-10 kPa) and proportion of inlier data (50%-95%). As with all TOF SWS estimation methods, the accuracy and precision of the RANSAC reconstructed shear modulus decreases with increasing tissue stiffness. The RANSAC SWS estimator was applied to radiation force induced shear wave data from 123 human patient livers acquired with a modified SONOLINE Antares ultrasound system (Siemens Healthcare, Ultrasound Business Unit, Mountain View, CA, USA) in a clinical setting before liver biopsy was performed. Stiffness measurements were not possible in 19 patients due to the absence of shear wave propagation inside the liver. The mean liver stiffness for the remaining 104 patients ranged from 1.3 to 24.2 kPa and the proportion of inliers for the successful reconstructions ranged between 42% to 99%. Using RANSAC for SWS estimation improved the diagnostic accuracy of liver stiffness for delineating fibrosis stage compared with ordinary least squares (OLS) without outlier removal (AUROC = 0.94 for F >or= 3 and AUROC = 0.98 for F = 4). These results show that RANSAC is a suitable method for estimating the SWS from noisy in vivo shear wave displacements tracked by ultrasound.

摘要

组织的刚性可以通过测量介质内的剪切波速度 (SWS) 来定量。超声是一种实时成像方式,能够跟踪软组织中剪切波的传播。飞行时间 (TOF) 方法已被证明可有效从超声跟踪的位移中量化 SWS。然而,由于存在其他来源的误差,例如生理运动或组织中的空间不均匀性,这些方法在体内数据中的应用具有挑战性。本文介绍了随机抽样一致 (RANSAC) 的使用,这是一种对存在大量离群数据具有鲁棒性的模型拟合范例,用于估计体内超声跟踪组织位移的 SWS。SWS 重建被提出为参数估计问题,并描述了 RANSAC 对该问题的解决方案。使用合成 TOF 数据的模拟表明,RANSAC 能够在一定的剪切刚度范围内(0.6-10 kPa)和内点数据比例(50%-95%)获得良好的刚度重建精度(平均误差 0.5 kPa)和精度(标准偏差 0.6 kPa)。与所有 TOF SWS 估计方法一样,RANSAC 重建剪切模量的准确性和精度随组织刚度的增加而降低。RANSAC SWS 估计器应用于通过修改后的 SONOLINE Antares 超声系统(西门子医疗,超声业务部门,加利福尼亚州山景城)在临床环境中从 123 名人类患者的肝脏中获得的辐射力诱导剪切波数据,在进行肝活检之前。由于肝脏内没有剪切波传播,19 名患者无法进行硬度测量。其余 104 名患者的平均肝脏硬度范围为 1.3 至 24.2 kPa,成功重建的内点比例在 42%至 99%之间。与没有离群值去除的普通最小二乘法 (OLS) 相比,使用 RANSAC 进行 SWS 估计可提高肝脏硬度区分纤维化阶段的诊断准确性(F≥3 的 AUROC = 0.94,F = 4 的 AUROC = 0.98)。这些结果表明,RANSAC 是一种从超声跟踪的嘈杂体内剪切波位移中估计 SWS 的合适方法。

相似文献

1
Improving the robustness of time-of-flight based shear wave speed reconstruction methods using RANSAC in human liver in vivo.
Ultrasound Med Biol. 2010 May;36(5):802-13. doi: 10.1016/j.ultrasmedbio.2010.02.007. Epub 2010 Apr 9.
2
Robust estimation of time-of-flight shear wave speed using a radon sum transformation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Dec;57(12):2662-70. doi: 10.1109/TUFFC.2010.1740.
3
Quantifying hepatic shear modulus in vivo using acoustic radiation force.
Ultrasound Med Biol. 2008 Apr;34(4):546-58. doi: 10.1016/j.ultrasmedbio.2007.10.009. Epub 2008 Jan 25.
4
Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
Ultraschall Med. 2016 Feb;37(1):1-5. doi: 10.1055/s-0035-1567037. Epub 2016 Feb 12.
5
Combining Deep Data-Driven and Physics-Inspired Learning for Shear Wave Speed Estimation in Ultrasound Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2025 Jun;72(6):806-816. doi: 10.1109/TUFFC.2025.3561599.
6
Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver.
Ultrasound Med Biol. 2016 May;42(5):1031-41. doi: 10.1016/j.ultrasmedbio.2015.12.012. Epub 2016 Jan 21.
7
In vivo mapping of brain elasticity in small animals using shear wave imaging.
IEEE Trans Med Imaging. 2011 Mar;30(3):550-8. doi: 10.1109/TMI.2010.2079940. Epub 2010 Sep 27.
8
Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Apr;62(4):647-62. doi: 10.1109/TUFFC.2014.006805.
9
Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Apr;56(4):748-58. doi: 10.1109/TUFFC.2009.1097.

引用本文的文献

1
Evaluation of Robustness of Local Phase Velocity Imaging in Homogenous Tissue-Mimicking Phantoms.
Ultrasound Med Biol. 2021 Dec;47(12):3514-3528. doi: 10.1016/j.ultrasmedbio.2021.08.002. Epub 2021 Aug 26.
2
A review of physical and engineering factors potentially affecting shear wave elastography.
J Med Ultrason (2001). 2021 Oct;48(4):403-414. doi: 10.1007/s10396-021-01127-w. Epub 2021 Aug 28.
4
On the Relationship between Spatial Coherence and In Situ Pressure for Abdominal Imaging.
Ultrasound Med Biol. 2021 Aug;47(8):2310-2320. doi: 10.1016/j.ultrasmedbio.2021.03.008. Epub 2021 May 11.
5
Quantifying the Effect of Abdominal Body Wall on In Situ Peak Rarefaction Pressure During Diagnostic Ultrasound Imaging.
Ultrasound Med Biol. 2021 Jun;47(6):1548-1558. doi: 10.1016/j.ultrasmedbio.2021.01.028. Epub 2021 Mar 13.
7
Optimization of Ultrasound Backscatter Spectroscopy to Assess Neurotoxic Effects of Anesthesia in the Newborn Non-human Primate Brain.
Ultrasound Med Biol. 2020 Aug;46(8):2044-2056. doi: 10.1016/j.ultrasmedbio.2020.04.004. Epub 2020 May 29.
9
Fast Local Phase Velocity-Based Imaging: Shear Wave Particle Velocity and Displacement Motion Study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Mar;67(3):526-537. doi: 10.1109/TUFFC.2019.2948512. Epub 2019 Oct 21.
10
Quantitative assessment of cervical softening during pregnancy with shear wave elasticity imaging: an longitudinal study.
Interface Focus. 2019 Oct 6;9(5):20190030. doi: 10.1098/rsfs.2019.0030. Epub 2019 Aug 16.

本文引用的文献

1
Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity.
IEEE Trans Med Imaging. 2009 Mar;28(3):313-22. doi: 10.1109/TMI.2008.925077.
2
Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jan;56(1):55-62. doi: 10.1109/TUFFC.2009.1005.
3
Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study.
Ultrasound Med Biol. 2009 Feb;35(2):219-29. doi: 10.1016/j.ultrasmedbio.2008.08.018. Epub 2008 Dec 11.
4
Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging.
Ultrasound Med Biol. 2008 Sep;34(9):1373-86. doi: 10.1016/j.ultrasmedbio.2008.02.002. Epub 2008 Apr 8.
5
Performance of transient elastography for the staging of liver fibrosis: a meta-analysis.
Gastroenterology. 2008 Apr;134(4):960-74. doi: 10.1053/j.gastro.2008.01.034. Epub 2008 Jan 18.
6
Quantifying hepatic shear modulus in vivo using acoustic radiation force.
Ultrasound Med Biol. 2008 Apr;34(4):546-58. doi: 10.1016/j.ultrasmedbio.2007.10.009. Epub 2008 Jan 25.
7
Assessment of hepatic fibrosis with magnetic resonance elastography.
Clin Gastroenterol Hepatol. 2007 Oct;5(10):1207-1213.e2. doi: 10.1016/j.cgh.2007.06.012.
8
Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force.
Ultrason Imaging. 2007 Apr;29(2):87-104. doi: 10.1177/016173460702900202.
9
A parallel tracking method for acoustic radiation force impulse imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):301-12. doi: 10.1109/tuffc.2007.244.
10
Rapid tracking of small displacements with ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jun;53(6):1103-17. doi: 10.1109/tuffc.2006.1642509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验