Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
J Colloid Interface Sci. 2010 Jul 1;347(1):90-5. doi: 10.1016/j.jcis.2010.03.028. Epub 2010 Mar 16.
A modified mirror reaction was developed to prepare a sensitive and reproducible Ag nanofilm substrate for the surface-enhanced Raman scattering (SERS) analysis of arsenate (As(V)) and arsenite (As(III)). A good linear relationship between the SERS intensity of As(V) and As(III) and their concentrations in the range from 10 to 500 microg-As/L was achieved using the SERS substrate. As(V) and As(III) appear to be adsorbed on the Ag nanofilm through formation of surface complexes with Ag, based on comparisons of the Raman spectra of the arsenic species in solutions, on the SERS substrate, and in silver arsenate and arsenite solids. As(V) and As(III) species on the SERS substrate and in the solids had the same Raman band positions at 780 and 721 cm(-1), respectively. The effect of eight ions in natural waters on the SERS analysis of As(V) was studied. K(+), Na(+), SO(4)(2-), CO(3)(2-), and NO(3)(-) in the range of 0.1-100 mg/L did not interfere with the SERS detection of As(V) for a As(V) concentration greater than 100 microg-As/L. While Cl(-) (50 mg/L), Mg(2+) (10 mg/L), and Ca(2+) (1 mg/L) were found to quench the SERS intensity of 100 microg/L As(V). Cl(-) (at concentrations >10 mg/L) formed silver chloride with the adsorbed Ag(+) and decreased the SERS detection limits for arsenic species. The mechanism of the Ca(2+) effect on the SERS analysis of As(V) was through the formation of surface complexes with As(V) in competition with Ag. When the Ca(2+) concentration increased from 0 to 100 mg/L, the amount of As(V) adsorbed in Ag nanoparticles was reduced from 38.9 to 11.0 microg/mg-Ag. When the Ca(2+) concentration increased to values higher than 1 mg/L in the As(V) solution, the As(V) peak height was decreased in the corresponding SERS spectra and the peak position shifted from 780 to 800 cm(-1). The fundamental findings obtained in this research are especially valuable for the development of sensitive and reliable SERS methods for rapid analysis of arsenic in contaminated water.
开发了一种改进的镜面反应,用于制备灵敏且可重现的 Ag 纳米薄膜基底,用于砷酸盐(As(V))和亚砷酸盐(As(III))的表面增强拉曼散射(SERS)分析。使用 SERS 基底,在 10 至 500 μg-As/L 的范围内,获得了 As(V)和 As(III)的 SERS 强度与其浓度之间的良好线性关系。基于溶液中砷物种的拉曼光谱、SERS 基底上以及银砷酸盐和亚砷酸盐固体中的砷物种的比较,As(V)和 As(III)似乎通过与 Ag 形成表面络合物而被吸附在 Ag 纳米薄膜上。在 SERS 基底上和固体中的 As(V)和 As(III)物种的拉曼带位置相同,分别为 780 和 721 cm(-1)。研究了天然水中的八种离子对 As(V)的 SERS 分析的影响。在 100 μg-As/L 以上的 As(V)浓度下,0.1-100 mg/L 范围内的 K(+)、Na(+)、SO(4)(2-)、CO(3)(2-)和 NO(3)(-)对 As(V)的 SERS 检测没有干扰。然而,发现 Cl(-)(50 mg/L)、Mg(2+)(10 mg/L)和 Ca(2+)(1 mg/L)会猝灭 100 μg/L As(V)的 SERS 强度。Cl(-)(浓度大于 10 mg/L 时)与吸附的 Ag(+)形成氯化银,降低了砷物种的 SERS 检测限。Ca(2+)对 As(V)的 SERS 分析的影响机制是通过与 As(V)形成表面络合物与 Ag 竞争。当 Ca(2+)浓度从 0 增加到 100 mg/L 时,Ag 纳米颗粒中吸附的 As(V)量从 38.9 减少到 11.0 μg/mg-Ag。当 Ca(2+)浓度在 As(V)溶液中增加到高于 1 mg/L 时,相应的 SERS 光谱中 As(V)的峰高降低,峰位置从 780 移至 800 cm(-1)。本研究获得的基本发现对于开发灵敏可靠的 SERS 方法快速分析受污染水中的砷特别有价值。