Suppr超能文献

流感,用于流感蛋白的氨基酸替代模型。

FLU, an amino acid substitution model for influenza proteins.

机构信息

College of Technology, Vietnam National University Hanoi, Cau Giay, Hanoi, Vietnam.

出版信息

BMC Evol Biol. 2010 Apr 12;10:99. doi: 10.1186/1471-2148-10-99.

Abstract

BACKGROUND

The amino acid substitution model is the core component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Although several general amino acid substitution models have been estimated from large and diverse protein databases, they remain inappropriate for analyzing specific species, e.g., viruses. Emerging epidemics of influenza viruses raise the need for comprehensive studies of these dangerous viruses. We propose an influenza-specific amino acid substitution model to enhance the understanding of the evolution of influenza viruses.

RESULTS

A maximum likelihood approach was applied to estimate an amino acid substitution model (FLU) from approximately 113,000 influenza protein sequences, consisting of approximately 20 million residues. FLU outperforms 14 widely used models in constructing maximum likelihood phylogenetic trees for the majority of influenza protein alignments. On average, FLU gains approximately 42 log likelihood points with an alignment of 300 sites. Moreover, topologies of trees constructed using FLU and other models are frequently different. FLU does indeed have an impact on likelihood improvement as well as tree topologies. It was implemented in PhyML and can be downloaded from ftp://ftp.sanger.ac.uk/pub/1000genomes/lsq/FLU or included in PhyML 3.0 server at http://www.atgc-montpellier.fr/phyml/.

CONCLUSIONS

FLU should be useful for any influenza protein analysis system which requires an accurate description of amino acid substitutions.

摘要

背景

氨基酸替代模型是许多蛋白质分析系统的核心组成部分,如序列相似性搜索、序列比对和系统发育推断。尽管已经从大型和多样化的蛋白质数据库中估计出了几种通用的氨基酸替代模型,但它们仍然不适合分析特定的物种,例如病毒。流感病毒的新出现流行疫情提出了对这些危险病毒进行全面研究的必要性。我们提出了一种流感特异性的氨基酸替代模型,以增强对流感病毒进化的理解。

结果

应用最大似然法从大约 113000 个流感蛋白序列中估计了一个氨基酸替代模型(FLU),这些序列包含大约 2000 万个残基。FLU 在构建大多数流感蛋白比对的最大似然系统发育树方面优于 14 种广泛使用的模型。平均而言,FLU 在 300 个位点的比对中可获得约 42 个对数似然点。此外,使用 FLU 和其他模型构建的树的拓扑结构经常不同。FLU 确实对似然改进和树拓扑结构有影响。它已在 PhyML 中实现,并可从 ftp://ftp.sanger.ac.uk/pub/1000genomes/lsq/FLU 下载,或在 http://www.atgc-montpellier.fr/phyml/ 包含在 PhyML 3.0 服务器中。

结论

FLU 应该对任何需要准确描述氨基酸替换的流感蛋白分析系统都有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db73/2873421/f9a5b5f77a2b/1471-2148-10-99-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验