Suppr超能文献

基于近似贝叶斯计算的蛋白质进化中依赖于位置的结构约束替代模型的选择。

Selection among site-dependent structurally constrained substitution models of protein evolution by approximate Bayesian computation.

机构信息

CINBIO, Universidade de Vigo, 36310 Vigo, Spain.

Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain.

出版信息

Bioinformatics. 2024 Mar 4;40(3). doi: 10.1093/bioinformatics/btae096.

Abstract

MOTIVATION

The selection among substitution models of molecular evolution is fundamental for obtaining accurate phylogenetic inferences. At the protein level, evolutionary analyses are traditionally based on empirical substitution models but these models make unrealistic assumptions and are being surpassed by structurally constrained substitution (SCS) models. The SCS models often consider site-dependent evolution, a process that provides realism but complicates their implementation into likelihood functions that are commonly used for substitution model selection.

RESULTS

We present a method to perform selection among site-dependent SCS models, also among empirical and site-dependent SCS models, based on the approximate Bayesian computation (ABC) approach and its implementation into the computational framework ProteinModelerABC. The framework implements ABC with and without regression adjustments and includes diverse empirical and site-dependent SCS models of protein evolution. Using extensive simulated data, we found that it provides selection among SCS and empirical models with acceptable accuracy. As illustrative examples, we applied the framework to analyze a variety of protein families observing that SCS models fit them better than the corresponding best-fitting empirical substitution models.

AVAILABILITY AND IMPLEMENTATION

ProteinModelerABC is freely available from https://github.com/DavidFerreiro/ProteinModelerABC, can run in parallel and includes a graphical user interface. The framework is distributed with detailed documentation and ready-to-use examples.

摘要

动机

在获得准确的系统发育推断时,对分子进化替代模型的选择是至关重要的。在蛋白质水平上,传统的进化分析基于经验替代模型,但这些模型做出了不切实际的假设,并且正在被结构约束替代(SCS)模型所超越。SCS 模型通常考虑依赖于位置的进化,这一过程提供了现实性,但使它们的实施变得复杂,因为它们难以纳入通常用于替代模型选择的似然函数中。

结果

我们提出了一种基于近似贝叶斯计算(ABC)方法和其在计算框架 ProteinModelerABC 中的实现,对依赖于位置的 SCS 模型、经验模型和依赖于位置的 SCS 模型进行选择的方法。该框架实现了有无回归调整的 ABC,并包含了各种经验和依赖于位置的蛋白质进化 SCS 模型。使用广泛的模拟数据,我们发现它可以以可接受的准确性在 SCS 和经验模型之间进行选择。作为说明性的例子,我们应用该框架分析了多种蛋白质家族,发现 SCS 模型比相应的最佳拟合经验替代模型更适合它们。

可用性和实现

ProteinModelerABC 可从 https://github.com/DavidFerreiro/ProteinModelerABC 免费获得,可并行运行,并包括一个图形用户界面。该框架随附有详细的文档和即用型示例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验