Suppr超能文献

QMaker:一种快速准确的蛋白质进化经验模型估计方法。

QMaker: Fast and Accurate Method to Estimate Empirical Models of Protein Evolution.

机构信息

School of Computing, Australian National University, 145 Science Road, Acton, ACT 2601, Canberra, Australia.

Department of Ecology and Evolution, Research School of Biology, Australian National University, 145 Science Road, Acton, ACT 2601, Canberra, Australia.

出版信息

Syst Biol. 2021 Aug 11;70(5):1046-1060. doi: 10.1093/sysbio/syab010.

Abstract

Amino acid substitution models play a crucial role in phylogenetic analyses. Maximum likelihood (ML) methods have been proposed to estimate amino acid substitution models; however, they are typically complicated and slow. In this article, we propose QMaker, a new ML method to estimate a general time-reversible $Q$ matrix from a large protein data set consisting of multiple sequence alignments. QMaker combines an efficient ML tree search algorithm, a model selection for handling the model heterogeneity among alignments, and the consideration of rate mixture models among sites. We provide QMaker as a user-friendly function in the IQ-TREE software package (http://www.iqtree.org) supporting the use of multiple CPU cores so that biologists can easily estimate amino acid substitution models from their own protein alignments. We used QMaker to estimate new empirical general amino acid substitution models from the current Pfam database as well as five clade-specific models for mammals, birds, insects, yeasts, and plants. Our results show that the new models considerably improve the fit between model and data and in some cases influence the inference of phylogenetic tree topologies.[Amino acid replacement matrices; amino acid substitution models; maximum likelihood estimation; phylogenetic inferences.].

摘要

氨基酸替换模型在系统发育分析中起着至关重要的作用。已经提出了最大似然(ML)方法来估计氨基酸替换模型;然而,它们通常很复杂且速度较慢。在本文中,我们提出了 QMaker,这是一种从由多个序列比对组成的大型蛋白质数据集估计通用时反转 Q 矩阵的新 ML 方法。QMaker 结合了一种高效的 ML 树搜索算法、一种用于处理比对之间模型异质性的模型选择以及对站点之间的速率混合模型的考虑。我们将 QMaker 作为 IQ-TREE 软件包(http://www.iqtree.org)中的一个用户友好的函数提供,支持使用多个 CPU 内核,以便生物学家可以轻松地从自己的蛋白质比对中估计氨基酸替换模型。我们使用 QMaker 从当前 Pfam 数据库以及哺乳动物、鸟类、昆虫、酵母和植物的五个特定类群模型中估计新的经验通用氨基酸替换模型。我们的结果表明,新模型显著改善了模型与数据之间的拟合度,并且在某些情况下影响了系统发育树拓扑结构的推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae09/8357343/fa67fb492039/syab010f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验