Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
Respir Physiol Neurobiol. 2010 May 31;171(3):193-200. doi: 10.1016/j.resp.2010.04.003. Epub 2010 Apr 10.
Preterm infants have a reduced pulmonary diffusing capacity that has been invoked to explain rapid arterial O(2)-desaturation during apnea, despite little evidence to support this view. We explored the role of diffusion limitation on O(2)-desaturation during apnea by developing a mathematical model of gas exchange in which O(2) dynamically loads the blood traversing the pulmonary capillary. While normal diffusing capacity DL((O(2)) had negligible impact on apneic desaturation, reduced DL((O(2)) advanced the onset of desaturation during apnea. Unexpectedly, despite considerable diffusion limitation, its influence on O(2)-desaturation disappeared within 15s, because its impact in slowing alveolar O(2) depletion maintained a higher driving pressure for diffusion. In contrast, reduced DL((O(2)) substantially slowed reoxygenation following apnea. Our findings do not support the hypothesis that reduced DL((O(2)) explains the rapid apneic desaturation observed in preterm infants. Instead, the signature of reduced DL((O(2)) is a prolonged hypoxemia following apnea, potentially causing a persistence of hypoxic conditions when heart rate and cardiac workload reach a peak.
早产儿的肺弥散能力降低,这被认为是导致呼吸暂停时动脉血氧快速下降的原因,但这一观点几乎没有证据支持。我们通过建立一个气体交换的数学模型来探索弥散限制在呼吸暂停时对氧饱和度下降的作用,在这个模型中,氧气动态地加载流经肺毛细血管的血液。虽然正常的弥散能力(DL(O(2))对呼吸暂停性低氧血症的影响可以忽略不计,但降低的 DL(O(2))会提前出现呼吸暂停时的低氧血症。出乎意料的是,尽管存在相当大的弥散限制,但它对氧饱和度下降的影响在 15 秒内消失了,因为它减缓肺泡氧消耗的作用维持了更高的扩散驱动力。相比之下,降低的 DL(O(2))会大大减缓呼吸暂停后的复氧。我们的研究结果并不支持降低的 DL(O(2))解释早产儿观察到的快速呼吸暂停性低氧血症的假设。相反,降低的 DL(O(2))的特征是呼吸暂停后长时间的低氧血症,当心率和心脏工作量达到峰值时,可能会导致缺氧状态持续存在。