Suppr超能文献

MUSTANG-MR 结构筛析服务器:在蛋白质结构分析和晶体学中的应用。

MUSTANG-MR structural sieving server: applications in protein structural analysis and crystallography.

机构信息

NICTA Victoria Research Laboratory at The University of Melbourne, The University of Melbourne, Melbourne, Australia.

出版信息

PLoS One. 2010 Apr 6;5(4):e10048. doi: 10.1371/journal.pone.0010048.

Abstract

BACKGROUND

A central tenet of structural biology is that related proteins of common function share structural similarity. This has key practical consequences for the derivation and analysis of protein structures, and is exploited by the process of "molecular sieving" whereby a common core is progressively distilled from a comparison of two or more protein structures. This paper reports a novel web server for "sieving" of protein structures, based on the multiple structural alignment program MUSTANG.

METHODOLOGY/PRINCIPAL FINDINGS: "Sieved" models are generated from MUSTANG-generated multiple alignment and superpositions by iteratively filtering out noisy residue-residue correspondences, until the resultant correspondences in the models are optimally "superposable" under a threshold of RMSD. This residue-level sieving is also accompanied by iterative elimination of the poorly fitting structures from the input ensemble. Therefore, by varying the thresholds of RMSD and the cardinality of the ensemble, multiple sieved models are generated for a given multiple alignment and superposition from MUSTANG. To aid the identification of structurally conserved regions of functional importance in an ensemble of protein structures, Lesk-Hubbard graphs are generated, plotting the number of residue correspondences in a superposition as a function of its corresponding RMSD. The conserved "core" (or typically active site) shows a linear trend, which becomes exponential as divergent parts of the structure are included into the superposition.

CONCLUSIONS

The application addresses two fundamental problems in structural biology: first, the identification of common substructures among structurally related proteins--an important problem in characterization and prediction of function; second, generation of sieved models with demonstrated uses in protein crystallographic structure determination using the technique of Molecular Replacement.

摘要

背景

结构生物学的一个基本原理是,具有共同功能的相关蛋白质具有结构相似性。这对蛋白质结构的推导和分析具有关键的实际意义,并且通过“分子筛选”过程得到了利用,该过程通过比较两个或更多蛋白质结构,从逐步提取共同核心。本文报道了一种基于 MUSTANG 多重结构比对程序的新型蛋白质结构“筛选”网络服务器。

方法/主要发现:“筛选”模型是根据 MUSTANG 生成的多重比对和叠加,通过迭代过滤掉噪声残基-残基对应关系来生成的,直到模型中的对应关系在 RMSD 的阈值下达到最佳“可叠加”。这种残基水平的筛选还伴随着从输入集合中迭代消除拟合不良的结构。因此,通过改变 RMSD 和集合基数的阈值,可以为 MUSTANG 生成的给定多重比对和叠加生成多个筛选模型。为了帮助识别蛋白质结构集合中具有功能重要性的结构保守区域,生成了 Lesk-Hubbard 图,将叠加中残基对应关系的数量绘制为其相应 RMSD 的函数。保守的“核心”(或典型的活性位点)呈现线性趋势,随着结构的分歧部分被纳入叠加,趋势变为指数。

结论

该应用解决了结构生物学中的两个基本问题:首先,在结构相关蛋白质中识别共同亚结构 - 这是功能特征化和预测的重要问题;其次,通过分子替换技术生成具有证明用途的筛选模型在蛋白质晶体学结构测定中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/137b/2850368/31df2b78ce72/pone.0010048.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验