Börgers Christoph, Krupa Martin, Gielen Stan
Department of Mathematics, Tufts University, Medford, MA 02155, USA.
J Comput Neurosci. 2010 Jun;28(3):509-26. doi: 10.1007/s10827-010-0233-8. Epub 2010 Apr 13.
A population of uncoupled neurons can often be brought close to synchrony by a single strong inhibitory input pulse affecting all neurons equally. This mechanism is thought to underlie some brain rhythms, in particular gamma frequency (30-80 Hz) oscillations in the hippocampus and neocortex. Here we show that synchronization by an inhibitory input pulse often fails for populations of classical Hodgkin-Huxley neurons. Our reasoning suggests that in general, synchronization by inhibitory input pulses can fail when the transition of the target neurons from rest to spiking involves a Hopf bifurcation, especially when inhibition is shunting, not hyperpolarizing. Surprisingly, synchronization is more likely to fail when the inhibitory pulse is stronger or longer-lasting. These findings have potential implications for the question which neurons participate in brain rhythms, in particular in gamma oscillations.
一群解耦的神经元通常可以通过一个同等影响所有神经元的强抑制性输入脉冲而接近同步。这种机制被认为是某些脑节律的基础,特别是海马体和新皮层中的伽马频率(30 - 80赫兹)振荡。在这里我们表明,对于经典霍奇金 - 赫胥黎神经元群体,通过抑制性输入脉冲实现同步通常会失败。我们的推理表明,一般来说,当目标神经元从静息状态转变为发放冲动涉及霍普夫分岔时,通过抑制性输入脉冲实现同步可能会失败,特别是当抑制是分流性的而非超极化性的时候。令人惊讶的是,当抑制性脉冲更强或持续时间更长时,同步更有可能失败。这些发现对于哪些神经元参与脑节律,特别是伽马振荡的问题具有潜在影响。