Suppr超能文献

由GABA能反转电位控制的神经元振荡同步性。

Synchrony of neuronal oscillations controlled by GABAergic reversal potentials.

作者信息

Jeong Ho Young, Gutkin Boris

机构信息

Center for Neural Science, New York University, New York, NY 10003, USA.

出版信息

Neural Comput. 2007 Mar;19(3):706-29. doi: 10.1162/neco.2007.19.3.706.

Abstract

GABAergic synapse reversal potential is controlled by the concentration of chloride. This concentration can change significantly during development and as a function of neuronal activity. Thus, GABA inhibition can be hyperpolarizing, shunting, or partially depolarizing. Previous results pinpointed the conditions under which hyperpolarizing inhibition (or depolarizing excitation) can lead to synchrony of neural oscillators. Here we examine the role of the GABAergic reversal potential in generation of synchronous oscillations in circuits of neural oscillators. Using weakly coupled oscillator analysis, we show when shunting and partially depolarizing inhibition can produce synchrony, asynchrony, and coexistence of the two. In particular, we show that this depends critically on such factors as the firing rate, the speed of the synapse, spike frequency adaptation, and, most important, the dynamics of spike generation (type I versus type II). We back up our analysis with simulations of small circuits of conductance-based neurons, as well as large-scale networks of neural oscillators. The simulation results are compatible with the analysis: for example, when bistability is predicted analytically, the large-scale network shows clustered states.

摘要

γ-氨基丁酸能(GABAergic)突触反转电位受氯离子浓度控制。该浓度在发育过程中以及作为神经元活动的函数时会发生显著变化。因此,GABA抑制作用可以是超极化的、分流的或部分去极化的。先前的研究结果明确了超极化抑制(或去极化兴奋)导致神经振荡器同步的条件。在此,我们研究GABA能反转电位在神经振荡器回路中同步振荡产生过程中的作用。通过弱耦合振荡器分析,我们展示了分流和部分去极化抑制何时会产生同步、异步以及两者共存的情况。特别地,我们表明这关键取决于诸如发放率、突触速度、动作电位频率适应等因素,以及最重要的动作电位产生动力学(I型与II型)。我们通过基于电导的神经元小回路模拟以及神经振荡器大规模网络模拟来支持我们的分析。模拟结果与分析结果相符:例如,当通过分析预测出双稳性时,大规模网络会呈现聚集状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验