Department of Engineering Science and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America.
PLoS Comput Biol. 2021 Jun 30;17(6):e1008575. doi: 10.1371/journal.pcbi.1008575. eCollection 2021 Jun.
The synchronization of different γ-rhythms arising in different brain areas has been implicated in various cognitive functions. Here, we focus on the effect of the ubiquitous neuronal heterogeneity on the synchronization of ING (interneuronal network gamma) and PING (pyramidal-interneuronal network gamma) rhythms. The synchronization properties of rhythms depends on the response of their collective phase to external input. We therefore determine the macroscopic phase-response curve for finite-amplitude perturbations (fmPRC) of ING- and PING-rhythms in all-to-all coupled networks comprised of linear (IF) or quadratic (QIF) integrate-and-fire neurons. For the QIF networks we complement the direct simulations with the adjoint method to determine the infinitesimal macroscopic PRC (imPRC) within the exact mean-field theory. We show that the intrinsic neuronal heterogeneity can qualitatively modify the fmPRC and the imPRC. Both PRCs can be biphasic and change sign (type II), even though the phase-response curve for the individual neurons is strictly non-negative (type I). Thus, for ING rhythms, say, external inhibition to the inhibitory cells can, in fact, advance the collective oscillation of the network, even though the same inhibition would lead to a delay when applied to uncoupled neurons. This paradoxical advance arises when the external inhibition modifies the internal dynamics of the network by reducing the number of spikes of inhibitory neurons; the advance resulting from this disinhibition outweighs the immediate delay caused by the external inhibition. These results explain how intrinsic heterogeneity allows ING- and PING-rhythms to become synchronized with a periodic forcing or another rhythm for a wider range in the mismatch of their frequencies. Our results identify a potential function of neuronal heterogeneity in the synchronization of coupled γ-rhythms, which may play a role in neural information transfer via communication through coherence.
不同脑区产生的不同γ节律的同步已被牵涉到各种认知功能中。在这里,我们关注神经元异质性对 ING(神经元网络γ)和 PING(锥体神经元网络γ)节律同步的影响。节律的同步特性取决于其集体相位对外部输入的响应。因此,我们确定了全连接网络中有限幅度扰动(fmPRC)对 ING-和 PING-节律的宏观相位响应曲线,该网络由线性(IF)或二次(QIF)整合-点火神经元组成。对于 QIF 网络,我们用伴随方法来补充直接模拟,以在精确的平均场理论中确定无穷小宏观 PRC(imPRC)。我们表明,内在神经元异质性可以定性地改变 fmPRC 和 imPRC。这两个 PRC 都可以是双相的,并改变符号(II 型),尽管单个神经元的相位响应曲线是严格非负的(I 型)。因此,对于 ING 节律,例如,对抑制性细胞的外部抑制实际上可以使网络的集体振荡提前,即使将相同的抑制作用施加于非耦合神经元时,也会导致延迟。当外部抑制通过减少抑制性神经元的尖峰数来改变网络的内部动力学时,就会出现这种反常的提前;这种去抑制引起的提前超过了外部抑制引起的即时延迟。这些结果解释了内在异质性如何使 ING-和 PING-节律在其频率失配的更大范围内与周期性激励或另一个节律同步。我们的结果确定了神经元异质性在耦合γ节律同步中的潜在功能,这可能在通过相干性进行神经信息传递中发挥作用。