Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA.
Biochemistry. 2010 May 18;49(19):4027-35. doi: 10.1021/bi100155j.
The thermodynamic and kinetic properties of interactions of antibiotics with the aminoglycoside acetyltransferase (3)-IIIb (AAC) are determined with several experimental methods. These data represent the first such characterization of an enzyme that modifies the 2-deoxystreptamine ring common to all aminoglycoside antibiotics. Antibiotic substrates for AAC include kanamycin A, kanamycin B, tobramycin, sisomicin, neomycin B, paromomycin, lividomycin A, and ribostamycin. Kinetic studies show that kanamycin group aminoglycosides have higher k(cat) values than members of the neomycin group. Only small aminoglycosides without intraring constraints show substrate inhibition. Isothermal titration calorimetry (ITC) and fluorescence measurements are consistent with a molecular size-dependent stoichiometry where binding stoichiometries are 1.5-2.0 for small antibiotics and 1.0 for larger. Antibiotic-enzyme interaction occurs with a favorable enthalpy (DeltaH < 0) and a compensating unfavorable entropy (TDeltaS < 0). The presence of coenzyme A significantly increases the affinity of the antibiotic for AAC. However, the thermodynamic properties of its ternary complexes distinguish this enzyme from other aminoglycoside-modifying enzymes (AGMEs). Unlike other AGMEs, the enthalpy of binding becomes more favored by 1.7-10.0-fold in the presence of the cosubstrate CoASH, while the entropy becomes 2.0-22.5-fold less favored. The overall free energy change is still only 1.0-1.9 kcal/mol from binary to ternary for all antibiotics tested, which is similar to those for other aminoglycoside-modifying enzymes. A computationally derived homology model provides structural support for these conclusions and further indicates that AAC is likely a member of the GCN5-related acetyltransferase family of proteins.
采用多种实验方法确定了抗生素与氨基糖苷乙酰转移酶(3)-IIIb(AAC)相互作用的热力学和动力学性质。这些数据代表了对修饰所有氨基糖苷抗生素共有的 2-脱氧链霉胺环的修饰酶的首次此类特性描述。AAC 的抗生素底物包括卡那霉素 A、卡那霉素 B、妥布霉素、西索米星、新霉素 B、巴龙霉素、利福霉素 A 和核糖霉素。动力学研究表明,卡那霉素组氨基糖苷的 k(cat) 值高于新霉素组成员。只有没有环内限制的小氨基糖苷才表现出底物抑制。等温滴定量热法(ITC)和荧光测量结果与分子大小依赖性计量一致,其中结合计量比小抗生素为 1.5-2.0,而大抗生素为 1.0。抗生素-酶相互作用伴随着有利的焓(ΔH<0)和补偿性不利的熵(TDeltaS<0)。辅酶 A 的存在显著增加了抗生素与 AAC 的亲和力。然而,三元复合物的热力学性质将该酶与其他氨基糖苷修饰酶(AGMEs)区分开来。与其他 AGMEs 不同,在共底物 CoASH 的存在下,结合焓变得更加有利,增加了 1.7-10.0 倍,而熵变得不利 2.0-22.5 倍。对于所有测试的抗生素,从二元到三元的总自由能变化仍然只有 1.0-1.9 kcal/mol,这与其他氨基糖苷修饰酶相似。计算得出的同源模型为这些结论提供了结构支持,并进一步表明 AAC 可能是 GCN5 相关乙酰转移酶家族蛋白的成员。