Ozen Can, Serpersu Engin H
Graduate School of Genome Science and Technology, Department of Biochemistry and Cellular and Molecular Biology, and Center of Excellence in Structural Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA.
Biochemistry. 2004 Nov 23;43(46):14667-75. doi: 10.1021/bi0487286.
The aminoglycoside-3'-phosphotransferase IIIa [APH(3')-IIIa] phosphorylates aminoglycoside antibiotics and renders them ineffective against bacteria. APH(3')-IIIa is the most promiscuous aminoglycoside phosphotransferase enzyme, and it modifies more than 10 different aminoglycoside antibiotics. A wealth of information exists about the enzyme; however, thermodynamic properties of enzyme-aminoglycoside complexes are still not known. This study describes the determination of the thermodynamic parameters of the binary enzyme-aminoglycoside and the ternary enzyme-metal-ATP-aminoglycoside complexes of structurally related aminoglycosides using isothermal titration calorimetry. Formation of the binary enzyme-aminoglycoside complexes is enthalpically driven and exhibits a strongly disfavored entropic contribution. Formation of the ternary enzyme-metal-ATP-aminoglycoside complexes yields much smaller negative DeltaH values and more favorable entropic contributions. The presence of metal-ATP generally increases the affinity of aminoglycosides to the enzyme. This is consistent with the kinetic mechanism of the enzyme in which ordered binding of substrates occurs. However, the observed DeltaH values neither correlate with kinetic parameters k(cat), K(m), and k(cat)/K(m) nor correlate with the molecular size of the substrates. Comparison of the thermodynamic properties of the complexes formed by structurally similar aminoglycosides indicated that the 2'- and the 6'-amino groups of the substrates are involved in binding to the enzyme. Thermodynamic properties of the complexes formed by aminoglycosides differing only at the 3'-hydroxyl group suggested that the absence of this group does not alter the thermodynamic parameters of the ternary APH(3')-IIIa-metal-ATP-aminoglycoside complex. Our results also indicate that protonation of ligand and protein ionizable groups is coupled to the complex formation between aminoglycosides and APH(3')-IIIa. Comparison of DeltaH values for different aminoglycoside-enzyme complexes indicates that enzyme and substrates undergo significant conformational changes in complex formation.
氨基糖苷-3'-磷酸转移酶IIIa [APH(3')-IIIa] 使氨基糖苷类抗生素磷酸化,从而使其对细菌失效。APH(3')-IIIa是最具广谱性的氨基糖苷磷酸转移酶,它能修饰10多种不同的氨基糖苷类抗生素。关于这种酶已有大量信息;然而,酶-氨基糖苷复合物的热力学性质仍不清楚。本研究描述了使用等温滴定量热法测定结构相关氨基糖苷类的二元酶-氨基糖苷和三元酶-金属-ATP-氨基糖苷复合物的热力学参数。二元酶-氨基糖苷复合物的形成是由焓驱动的,并且表现出强烈不利的熵贡献。三元酶-金属-ATP-氨基糖苷复合物的形成产生的负ΔH值要小得多,且熵贡献更有利。金属-ATP的存在通常会增加氨基糖苷类与酶的亲和力。这与该酶的动力学机制一致,即底物按顺序结合。然而,观察到的ΔH值既与动力学参数k(cat)、K(m)和k(cat)/K(m)无关,也与底物的分子大小无关。对结构相似的氨基糖苷类形成的复合物的热力学性质进行比较表明,底物的2'-和6'-氨基参与与酶的结合。仅在3'-羟基不同的氨基糖苷类形成的复合物的热力学性质表明,该基团的缺失不会改变三元APH(3')-IIIa-金属-ATP-氨基糖苷复合物的热力学参数。我们的结果还表明,配体和蛋白质可电离基团的质子化与氨基糖苷类和APH(3')-IIIa之间的复合物形成相关。对不同氨基糖苷-酶复合物的ΔH值进行比较表明,酶和底物在复合物形成过程中发生了显著的构象变化。