Suppr超能文献

成纤维细胞生长因子信号在促性腺激素释放激素神经元系统发育中的作用。

Role of fibroblast growth factor signaling in gonadotropin-releasing hormone neuronal system development.

出版信息

Front Horm Res. 2010;39:37-50. doi: 10.1159/000312692. Epub 2010 Apr 8.

Abstract

There is growing evidence demonstrating that fibroblast growth factor (FGF) signaling is important for the development of the gonadotropin-releasing hormone (GnRH) neuronal system. In humans, loss-of-function mutations in FGF receptor 1 (Fgfr1) and Fgf8 lead to hypogonadotropic hypogonadism (HH) with or without anosmia. Insights into how FGF signaling deficiency disrupts the GnRH system in humans are beginning to emerge from studies using transgenic mouse models. In this review, we summarize GnRH system defects in several lines of FGF signaling-deficient mice. We showed that FGF signaling is critically required for olfactory placode induction, differentiation, and GnRH neuronal fate specification and postnatal maintenance. Extrapolating from these transgenic mouse data, we suggest that idiopathic HH in patients harboring loss-of-function Fgfr1 and/or Fgf8 mutations is not merely a result of defective GnRH neuronal migration, but also insults accumulated in the GnRH system during fate specification and postnatal development.

摘要

越来越多的证据表明,成纤维细胞生长因子(FGF)信号对于促性腺激素释放激素(GnRH)神经元系统的发育很重要。在人类中,FGF 受体 1(Fgfr1)和 Fgf8 的功能丧失性突变导致伴有或不伴有嗅觉缺失的促性腺激素低下性性腺功能减退症(HH)。使用转基因小鼠模型的研究开始揭示 FGF 信号缺陷如何在人类中破坏 GnRH 系统。在这篇综述中,我们总结了几种 FGF 信号缺陷的 GnRH 系统缺陷的小鼠模型。我们表明,FGF 信号对于嗅基板的诱导、分化以及 GnRH 神经元命运特化和出生后维持至关重要。从这些转基因小鼠数据推断,我们认为携带功能丧失性 Fgfr1 和/或 Fgf8 突变的患者的特发性 HH 不仅仅是 GnRH 神经元迁移缺陷的结果,而且也是在命运特化和出生后发育过程中在 GnRH 系统中累积的损伤。

相似文献

1
Role of fibroblast growth factor signaling in gonadotropin-releasing hormone neuronal system development.
Front Horm Res. 2010;39:37-50. doi: 10.1159/000312692. Epub 2010 Apr 8.
6
Epigenomic control of gonadotrophin-releasing hormone neurone development and hypogonadotrophic hypogonadism.
J Neuroendocrinol. 2020 Jun;32(6):e12860. doi: 10.1111/jne.12860. Epub 2020 May 26.
7
FGFR1 mutations in Kallmann syndrome.
Front Horm Res. 2010;39:51-61. doi: 10.1159/000312693. Epub 2010 Apr 8.
8
Functional Characteristics of Novel FGFR1 Mutations in Patients with Isolated Gonadotropin-Releasing Hormone Deficiency.
Exp Clin Endocrinol Diabetes. 2021 Jun;129(6):457-463. doi: 10.1055/a-1151-4800. Epub 2020 Jun 2.
9
Developmental regulation of gonadotropin-releasing hormone neurons by fibroblast growth factor signaling.
Endocrinology. 2004 Aug;145(8):3830-9. doi: 10.1210/en.2004-0214. Epub 2004 Apr 29.

引用本文的文献

1
Opposite sex housing enhances reproductive function and induces transcriptional changes in the preoptic area of GnRH-deficient mice.
Front Endocrinol (Lausanne). 2025 Apr 15;16:1571740. doi: 10.3389/fendo.2025.1571740. eCollection 2025.
2
The initiation and maintenance of gonadotropin-releasing hormone neuron identity in congenital hypogonadotropic hypogonadism.
Front Endocrinol (Lausanne). 2023 Apr 27;14:1166132. doi: 10.3389/fendo.2023.1166132. eCollection 2023.
3
Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty.
Front Endocrinol (Lausanne). 2022 Dec 22;13:1019468. doi: 10.3389/fendo.2022.1019468. eCollection 2022.
4
FGF8-FGFR1 signaling regulates human GnRH neuron differentiation in a time- and dose-dependent manner.
Dis Model Mech. 2022 Aug 1;15(8). doi: 10.1242/dmm.049436. Epub 2022 Aug 16.
5
Development of the gonadotropin-releasing hormone system.
J Neuroendocrinol. 2022 May;34(5):e13087. doi: 10.1111/jne.13087. Epub 2022 Jan 23.
6
TET1 regulates fibroblast growth factor 8 transcription in gonadotropin releasing hormone neurons.
PLoS One. 2019 Jul 30;14(7):e0220530. doi: 10.1371/journal.pone.0220530. eCollection 2019.
7
Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome.
Front Cell Dev Biol. 2019 Jul 11;7:121. doi: 10.3389/fcell.2019.00121. eCollection 2019.
8
Assessing Sex Steroid Influence on Kisspeptin Responsiveness in Idiopathic Hypogonadotropic Hypogonadism.
J Endocr Soc. 2018 Sep 20;2(11):1293-1305. doi: 10.1210/js.2018-00183. eCollection 2018 Nov 1.
9
Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.
Stem Cell Reports. 2016 Aug 9;7(2):149-57. doi: 10.1016/j.stemcr.2016.06.007. Epub 2016 Jul 14.
10
Disruption of the Suprachiasmatic Nucleus in Fibroblast Growth Factor Signaling-Deficient Mice.
Front Endocrinol (Lausanne). 2016 Feb 8;7:11. doi: 10.3389/fendo.2016.00011. eCollection 2016.

本文引用的文献

1
Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosmin-1.
J Biol Chem. 2009 Oct 23;284(43):29905-20. doi: 10.1074/jbc.M109.049155. Epub 2009 Aug 20.
4
Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism.
J Clin Invest. 2007 Feb;117(2):457-63. doi: 10.1172/JCI29884. Epub 2007 Jan 18.
5
Mechanisms of disease: Insights into X-linked and autosomal-dominant Kallmann syndrome.
Nat Clin Pract Endocrinol Metab. 2006 Mar;2(3):160-71. doi: 10.1038/ncpendmet0119.
7
Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes.
Mol Cell Endocrinol. 2006 Jul 25;254-255:60-9. doi: 10.1016/j.mce.2006.04.021. Epub 2006 Jun 9.
8
Postnatal remodeling of dendritic structure and spine density in gonadotropin-releasing hormone neurons.
Endocrinology. 2006 Aug;147(8):3652-61. doi: 10.1210/en.2006-0296. Epub 2006 Apr 27.
9
Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism.
Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6281-6. doi: 10.1073/pnas.0600962103. Epub 2006 Apr 10.
10
Neuroendocrine control of reproductive aging: roles of GnRH neurons.
Reproduction. 2006 Mar;131(3):403-14. doi: 10.1530/rep.1.00617.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验