Center for Biomedical Engineering, The University of New Mexico Albuquerque, NM 87131, USA.
Biofouling. 2010 Jan;26(1):111-8. doi: 10.1080/08927010903383455.
Controlling accumulations of unwanted biofilms requires an understanding of the mechanisms that organisms use to interact with submerged substrata. While the substratum properties influencing biofilm formation are well studied, those that may lead to cellular or biofilm detachment are not. Surface-grafted stimuli-responsive polymers, such as poly (N-isopropylacrylamide) (PNIPAAm) release attached cells upon induction of environmentally-triggered phase changes. Altering the physicochemical characteristics of such polymeric systems for systematically studying release, however, can alter the phase transition. The physico-chemical changes of thin films of PNIPAAm grafted from initiator-modified self-assembled monolayers (SAMs) of omega-substituted alkanethiolates on gold can be altered by changing the composition of the underlying SAM, without affecting the overlying polymer. This work demonstrates that the ability to tune such changes in substratum physico-chemistry allows systematic study of attachment and release of bacteria over a large range of water contact angles. Such surfaces show great promise for studying a variety of interactions at the biointerface. Understanding of the source of this tunability will require further studies into the heterogeneity of such films and further investigation of interactions beyond those of water wettability.
控制不需要的生物膜的积累需要了解生物体用于与水下基质相互作用的机制。虽然影响生物膜形成的基质特性得到了很好的研究,但那些可能导致细胞或生物膜脱落的特性却没有得到很好的研究。表面接枝的响应性聚合物,如聚(N-异丙基丙烯酰胺)(PNIPAAm),在环境触发的相变化诱导下释放附着的细胞。然而,为了系统地研究释放,改变这些聚合体系的物理化学特性可能会改变相转变。通过改变底层 SAM 的组成,可以改变接枝于引发剂改性自组装单层(SAM)的ω取代烷硫醇上的 PNIPAAm 薄膜的物理化学变化,而不会影响上层聚合物。这项工作表明,能够调整这种基质物理化学变化的能力允许在大范围的水接触角下对细菌的附着和释放进行系统研究。这些表面在研究生物界面的各种相互作用方面具有很大的应用前景。进一步研究这些薄膜的异质性以及除润湿性之外的相互作用,将有助于理解这种可调性的来源。