Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
Biomacromolecules. 2010 May 10;11(5):1358-63. doi: 10.1021/bm100136y.
Strain-stiffening behavior common to biopolymer networks is difficult to reproduce in synthetic networks. Physically associating synthetic polymer networks can be an exception to this rule and can demonstrate strain-stiffening behavior at relatively low values of strain. Here, the stiffening behavior of model elastic networks of physically associating triblock copolymers is characterized by shear rheometry. Experiments demonstrate a clear correlation between network structure and strain-stiffening behavior. Stiffening is accurately captured by a constitutive model with a single fitting parameter related to the midblock length. The same model is also effective for describing the stiffening of actin, collagen, and other biopolymer networks. Our synthetic polymer networks could be useful model systems for biological materials due to (1) the observed similarity in strain-stiffening behavior, which can be quantified and related to network structure, and (2) the tunable structure of the physically associating network, which can be manipulated to yield a desired response.
物理交联的合成聚合物网络具有应变硬化行为,这一行为在生物聚合物网络中很常见,但很难在合成网络中重现。然而,物理交联的合成聚合物网络可能是这一规则的例外,并且可以在相对较低的应变值下表现出应变硬化行为。在这里,通过剪切流变仪来描述物理交联的三嵌段共聚物模型弹性网络的硬化行为。实验证明了网络结构与应变硬化行为之间存在明显的相关性。通过一个具有单个拟合参数的本构模型可以准确地捕捉到硬化行为,该拟合参数与中嵌段长度有关。该模型对于描述肌动蛋白、胶原蛋白和其他生物聚合物网络的硬化行为也同样有效。由于(1)观察到的应变硬化行为具有相似性,可以对其进行量化并与网络结构相关联,以及(2)物理交联网络的结构可调,可进行操纵以产生所需的响应,我们的合成聚合物网络可能成为生物材料的有用模型系统。