Suppr超能文献

两种基本机制决定了交联网络的硬化。

Two fundamental mechanisms govern the stiffening of cross-linked networks.

作者信息

Žagar Goran, Onck Patrick R, van der Giessen Erik

机构信息

Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.

Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.

出版信息

Biophys J. 2015 Mar 24;108(6):1470-1479. doi: 10.1016/j.bpj.2015.02.015.

Abstract

Biopolymer networks, such as those constituting the cytoskeleton of a cell or biological tissue, exhibit a nonlinear strain-stiffening behavior when subjected to large deformations. Interestingly, rheological experiments on various in vitro biopolymer networks have shown similar strain-stiffening trends regardless of the differences in their microstructure or constituents, suggesting a universal stiffening mechanism. In this article, we use computer simulations of a random network comprised of cross-linked biopolymer-like fibers to substantiate the notion that this universality lies in the existence of two fundamental stiffening mechanisms. After showing that the large strain response is accompanied by the development of a stress path, i.e., a percolating path of axially stressed fibers and cross-links, we demonstrate that the strain stiffening can be caused by two distinctly different mechanisms: 1) the pulling out of stress-path undulations; and 2) reorientation of the stress path. The former mechanism is bending-dominated and can be recognized by a power-law dependence with exponent 3/2 of the shear modulus on stress, whereas the latter mechanism is stretching-dominated and characterized by a power-law exponent 1/2. We demonstrate how material properties of the constituents, as well as the network microstructure, can affect the transition between the two stiffening mechanisms and, as such, control the dominant power-law scaling behavior.

摘要

生物聚合物网络,例如构成细胞或生物组织细胞骨架的那些网络,在受到大变形时会表现出非线性应变硬化行为。有趣的是,对各种体外生物聚合物网络进行的流变学实验表明,无论其微观结构或成分存在差异,都呈现出相似的应变硬化趋势,这表明存在一种通用的硬化机制。在本文中,我们使用由交联的类生物聚合物纤维组成的随机网络的计算机模拟,来证实这种通用性在于存在两种基本的硬化机制这一观点。在表明大应变响应伴随着应力路径的形成,即轴向受力纤维和交联的渗流路径之后,我们证明应变硬化可能由两种截然不同的机制引起:1)应力路径波动的拉出;2)应力路径的重新定向。前一种机制以弯曲为主,可以通过剪切模量对应力的指数为3/2的幂律依赖关系来识别,而后一种机制以拉伸为主,其特征是幂律指数为1/2。我们展示了成分的材料特性以及网络微观结构如何影响两种硬化机制之间的转变,进而控制主导的幂律标度行为。

相似文献

2
Nonlinear Mechanics of Athermal Branched Biopolymer Networks.无热支化生物聚合物网络的非线性力学
J Phys Chem B. 2016 Jul 7;120(26):5831-41. doi: 10.1021/acs.jpcb.6b00259. Epub 2016 Mar 4.
3
Alternative explanation of stiffening in cross-linked semiflexible networks.交联半柔性网络中硬化现象的另一种解释。
Phys Rev Lett. 2005 Oct 21;95(17):178102. doi: 10.1103/PhysRevLett.95.178102. Epub 2005 Oct 18.
5
Effective-medium approach for stiff polymer networks with flexible cross-links.用于具有柔性交联的刚性聚合物网络的有效介质方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061914. doi: 10.1103/PhysRevE.79.061914. Epub 2009 Jun 11.
7
Cross-linked networks of stiff filaments exhibit negative normal stress.刚性细丝的交联网络呈现负法向应力。
Phys Rev Lett. 2009 Feb 27;102(8):088102. doi: 10.1103/PhysRevLett.102.088102. Epub 2009 Feb 26.
8
Compression stiffening of fibrous networks with stiff inclusions.纤维网络与刚性夹杂的压缩硬化。
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21037-21044. doi: 10.1073/pnas.2003037117. Epub 2020 Aug 17.
10
Minimal model for the inelastic mechanics of biopolymer networks and cells.生物聚合物网络与细胞非弹性力学的最小模型
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):040901. doi: 10.1103/PhysRevE.86.040901. Epub 2012 Oct 8.

引用本文的文献

2
Bulk and Interfacial Behavior of Potato Protein-Based Microgels.马铃薯蛋白基微凝胶的体相和界面行为。
Langmuir. 2024 Oct 15;40(41):21341-21351. doi: 10.1021/acs.langmuir.4c01785. Epub 2024 Oct 1.
4
Effect of Cross-Link Homogeneity on the High-Strain Behavior of Elastic Polymer Networks.交联均匀性对弹性聚合物网络高应变行为的影响
Macromolecules. 2024 May 8;57(10):4670-4679. doi: 10.1021/acs.macromol.3c02565. eCollection 2024 May 28.
5
The influence of physical and spatial substrate characteristics on endothelial cells.物理和空间基质特征对内皮细胞的影响。
Mater Today Bio. 2024 Apr 18;26:101060. doi: 10.1016/j.mtbio.2024.101060. eCollection 2024 Jun.
8
Hyperelastic continuum models for isotropic athermal fibrous networks.各向同性无热纤维网络的超弹性连续体模型。
Interface Focus. 2022 Oct 14;12(6):20220043. doi: 10.1098/rsfs.2022.0043. eCollection 2022 Dec 6.
9
Network dynamics of the nonlinear power-law relaxation of cell cortex.细胞皮层非线性幂律弛豫的网络动力学。
Biophys J. 2022 Nov 1;121(21):4091-4098. doi: 10.1016/j.bpj.2022.09.035. Epub 2022 Sep 28.

本文引用的文献

1
Elastic response of filamentous networks with compliant crosslinks.具有柔顺交联的丝状网络的弹性响应。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052705. doi: 10.1103/PhysRevE.88.052705. Epub 2013 Nov 8.
2
Biopolymer network geometries: characterization, regeneration, and elastic properties.生物聚合物网络几何结构:表征、再生及弹性特性
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051905. doi: 10.1103/PhysRevE.82.051905. Epub 2010 Nov 3.
3
Elasticity in ionically cross-linked neurofilament networks.离子交联神经丝网络的弹性。
Biophys J. 2010 May 19;98(10):2147-53. doi: 10.1016/j.bpj.2010.01.062.
6
Origins of elasticity in intermediate filament networks.中间丝网络弹性的起源。
Phys Rev Lett. 2010 Feb 5;104(5):058101. doi: 10.1103/PhysRevLett.104.058101. Epub 2010 Feb 1.
8
Effective-medium approach for stiff polymer networks with flexible cross-links.用于具有柔性交联的刚性聚合物网络的有效介质方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061914. doi: 10.1103/PhysRevE.79.061914. Epub 2009 Jun 11.
9
Computational analysis of viscoelastic properties of crosslinked actin networks.交联肌动蛋白网络粘弹性特性的计算分析
PLoS Comput Biol. 2009 Jul;5(7):e1000439. doi: 10.1371/journal.pcbi.1000439. Epub 2009 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验