Palmer Jeffrey S, Boyce Mary C
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 5-017, Cambridge, MA 02139, USA.
Acta Biomater. 2008 May;4(3):597-612. doi: 10.1016/j.actbio.2007.12.007. Epub 2008 Jan 8.
The central role of the cytoskeleton in both healthy and diseased cellular functions makes it a compelling subject for detailed three-dimensional (3D) micromechanical modeling. Microstructural features of the cytoskeleton govern the cell's mechanical behavior in many of the regulating cellular functions including cell division, adhesion, spreading, migration, contraction, and other mechanotransductive effects which influence biochemical processes. Actin microfilaments (AF) combine to form one of the predominant cytoskeletal networks important to these biological processes. Here, the AF cytoskeletal microstructure and stress-strain behavior is modeled via a microstructurally-informed continuum mechanics approach. The force-extension behavior of the individual filaments is captured using the MacKintosh derivation of the worm-like chain (WLC) constitutive relationship for short chains where a new and direct analytical expression for the filament force as a function of filament extension is developed in this paper. The filament force-extension behavior is then used in conjunction with the Arruda-Boyce eight-chain network model to capture the 3D multiaxial stress-strain behavior of the network. The resulting 3D cytoskeletal network constitutive model provides the ability to track microstructural stretch and orientation states during 3D macroscopic stretching conditions. The non-affine nature of the network model effectively accommodates the imposed macroscopic shear strain through filament rotation and a relatively small amount of filament stretch. These characteristics enable the network model, using physically realistic material properties, to capture the initial stiffness of the AF network as well as the nonlinear strain stiffening observed at large stresses. The network model predictions compare favorably with published microrheological data of in vitro AF networks.
细胞骨架在健康和患病细胞功能中都起着核心作用,这使其成为详细三维(3D)微观力学建模的一个引人注目的主题。细胞骨架的微观结构特征在许多调节细胞功能中决定细胞的力学行为,这些功能包括细胞分裂、黏附、铺展、迁移、收缩以及其他影响生化过程的力转导效应。肌动蛋白微丝(AF)结合形成对这些生物过程重要的主要细胞骨架网络之一。在此,通过一种基于微观结构的连续介质力学方法对AF细胞骨架微观结构和应力 - 应变行为进行建模。使用麦金托什对短链类蠕虫链(WLC)本构关系的推导来捕捉单个细丝的力 - 伸长行为,本文中针对细丝力作为细丝伸长的函数开发了一种新的直接解析表达式。然后将细丝力 - 伸长行为与阿鲁达 - 博伊斯八链网络模型结合使用,以捕捉网络的3D多轴应力 - 应变行为。所得的3D细胞骨架网络本构模型能够在3D宏观拉伸条件下跟踪微观结构的拉伸和取向状态。网络模型的非仿射性质通过细丝旋转和相对少量的细丝拉伸有效地适应了施加的宏观剪切应变。这些特性使网络模型能够使用符合实际物理情况的材料属性,捕捉AF网络的初始刚度以及在大应力下观察到的非线性应变硬化。网络模型的预测结果与已发表的体外AF网络微观流变学数据相比表现良好。