Department of Chemistry, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, Illinois 60208, USA.
J Am Chem Soc. 2010 May 5;132(17):6165-75. doi: 10.1021/ja100499j.
We describe a strategy by which reactive binding of a weakly bound, 'dynamically docked (DD)' complex without a known structure can be strengthened electrostatically through optimized placement of surface charges, and discuss its use in modulating complex formation between myoglobin (Mb) and cytochrome b(5) (b(5)). The strategy employs paired Brownian dynamics (BD) simulations, one which monitors overall binding, the other reactive binding, to examine [X --> K] mutations on the surface of the partners, with a focus on single and multiple [D/E --> K] charge reversal mutations. This procedure has been applied to the [Mb, b(5)] complex, indicating mutations of Mb residues D44, D60, and E85 to be the most promising, with combinations of these showing a nonlinear enhancement of reactive binding. A novel method of displaying BD profiles shows that the 'hits' of b(5) on the surfaces of Mb(WT), Mb(D44K/D60K), and Mb(D44K/D60K/E85K) progressively coalesce into two 'clusters': a 'diffuse' cluster of hits that are distributed over the Mb surface and have negligible electrostatic binding energy and a 'reactive' cluster of hits with considerable stability that are localized near its heme edge, with short Fe-Fe distances favorable to electron transfer (ET). Thus, binding and reactivity progressively become correlated by the mutations. This finding relates to recent proposals that complex formation is a two-step process, proceeding through the formation of a weakly bound encounter complex to a well-defined bound complex. The design procedure has been tested through measurements of photoinitiated ET between the Zn-substituted forms of Mb(WT), Mb(D44K/D60K), and Mb(D44K/D60K/E85K) and Fe(3+)b(5). Both mutants convert the complex from the DD regime exhibited by Mb(WT), in which the transient complex is in fast kinetic exchange with its partners, k(off) >> k(et), to the slow-exchange regime, k(et) >> k(off), and both mutants exhibit rapid intracomplex ET from the triplet excited state to Fe(3+)b(5) (rate constant, k(et) approximately 10(6) s(-1)). The affinity constants of the mutant Mbs cannot be derived through conventional analysis procedures because intracomplex singlet ET quenching causes the triplet-ground absorbance difference to progressively decrease during a titration, but this effect has been incorporated into a new procedure for computing binding constants. Most importantly, these measurements reveal the presence of fast photoinduced singlet ET across the protein-protein interface, (1)k(et) approximately 2 x 10(8) s(-1).
我们描述了一种策略,通过优化表面电荷的位置,使弱结合的“动态对接(DD)”复合物的反应性结合可以在静电上得到加强,并且讨论了其在调节肌红蛋白(Mb)和细胞色素 b(5)(b(5))之间的复合物形成中的用途。该策略采用配对布朗动力学(BD)模拟,一种监测整体结合,另一种监测反应性结合,以检查伴侣表面上的[X --> K]突变,重点是单个和多个[D / E --> K]电荷反转突变。已经将该程序应用于[Mb,b(5)]复合物,表明Mb 残基 D44,D60 和 E85 的突变是最有希望的,这些突变的组合显示出反应性结合的非线性增强。显示 BD 谱的新方法表明,b(5)在 Mb(WT),Mb(D44K / D60K)和 Mb(D44K / D60K / E85K)表面上的“命中”逐渐合并为两个“簇”:一个是散布的命中簇,散布在 Mb 表面上,具有可忽略的静电结合能,另一个是具有相当稳定性的反应性命中簇,位于其血红素边缘附近,Fe-Fe 距离有利于电子转移(ET)。因此,突变使结合和反应性逐渐相关。这一发现与最近的提议有关,即复合物的形成是一个两步过程,首先是通过形成弱结合的遭遇复合物到定义明确的结合复合物。该设计过程已经通过测量 Zn 取代的 Mb(WT),Mb(D44K / D60K)和 Mb(D44K / D60K / E85K)与 Fe(3+)b(5)之间的光引发 ET 进行了测试。两种突变体都将复合物从 Mb(WT)表现出的 DD 区域转变为慢交换区域,k(et)>> k(off),并且两种突变体都表现出从三重激发态到 Fe(3+)b(5)的快速的复合物内 ET(速率常数,k(et)≈10(6)s(-1))。突变 Mb 的亲和常数不能通过常规分析程序推导出来,因为复合物内单重态 ET 猝灭导致三重态-基态吸收差在滴定过程中逐渐减小,但是这种效应已经被纳入到一种新的计算结合常数的程序中。最重要的是,这些测量揭示了在蛋白质-蛋白质界面上存在快速的光诱导单重态 ET,(1)k(et)≈2 x 10(8)s(-1)。