Suppr超能文献

线粒体活性氧在破骨细胞分化中的作用。

Role of mitochondrial reactive oxygen species in osteoclast differentiation.

机构信息

Department of Animal Biology, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Ann N Y Acad Sci. 2010 Mar;1192(1):245-52. doi: 10.1111/j.1749-6632.2009.05377.x.

Abstract

Previously we showed that hypoxia-induced mitochondrial respiratory stress in RAW 264.7 macrophages and other cells caused activation of retrograde signaling (also known as mitochondrial respiratory stress signaling) and the appearance of tartrate-resistant acid phosphatase (TRAP)-positive cells. In the present study, we used N-acetyl cysteine and ascorbate (general antioxidants) and MitoQ, a mitochondria-specific antioxidant, to investigate the role of intracellular reactive oxygen species (ROS) in osteoclast differentiation. Our results show that hypoxia-mediated mitochondrial dysfunction, as tested by disruption of mitochondrial transmembrane potential, was suppressed by MitoQ as well as by the other antioxidants. These agents also suppressed the activation of mitochondrial retrograde signaling. Interestingly, in terms of molar concentrations, MitoQ was more than 1000-fold more effective than general antioxidants in suppressing the receptor activator of nuclear factor-B ligand-induced differentiation of RAW 264.7 cells into multinucleated and TRAP-positive osteoclasts. We propose that mitochondrial function and intramitochondrial ROS play important roles in osteoclastogenesis.

摘要

先前我们曾表明,缺氧诱导 RAW 264.7 巨噬细胞和其他细胞中的线粒体呼吸应激会导致逆行信号(也称为线粒体呼吸应激信号)的激活和抗酒石酸酸性磷酸酶(TRAP)阳性细胞的出现。在本研究中,我们使用 N-乙酰半胱氨酸和抗坏血酸(一般抗氧化剂)以及 MitoQ(一种线粒体特异性抗氧化剂)来研究细胞内活性氧(ROS)在破骨细胞分化中的作用。我们的结果表明,通过破坏线粒体跨膜电位测试的缺氧介导的线粒体功能障碍,被 MitoQ 以及其他抗氧化剂所抑制。这些试剂还抑制了线粒体逆行信号的激活。有趣的是,就摩尔浓度而言,MitoQ 在抑制核因子-B 配体受体激活诱导的 RAW 264.7 细胞向多核和 TRAP 阳性破骨细胞分化方面的效果比一般抗氧化剂高出 1000 多倍。我们提出,线粒体功能和线粒体内部的 ROS 在破骨细胞生成中起重要作用。

相似文献

1
Role of mitochondrial reactive oxygen species in osteoclast differentiation.
Ann N Y Acad Sci. 2010 Mar;1192(1):245-52. doi: 10.1111/j.1749-6632.2009.05377.x.
2
Coenzyme q10 regulates osteoclast and osteoblast differentiation.
J Food Sci. 2013 May;78(5):H785-891. doi: 10.1111/1750-3841.12116. Epub 2013 Apr 12.
3
Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation.
Biochem Biophys Res Commun. 2012 Feb 10;418(2):247-53. doi: 10.1016/j.bbrc.2012.01.005. Epub 2012 Jan 9.
4
Simvastatin inhibits osteoclast differentiation by scavenging reactive oxygen species.
Exp Mol Med. 2011 Nov 30;43(11):605-12. doi: 10.3858/emm.2011.43.11.067.
5
Hypoxia-mediated mitochondrial stress in RAW264.7 cells induces osteoclast-like TRAP-positive cells.
Ann N Y Acad Sci. 2007 Nov;1117:51-61. doi: 10.1196/annals.1402.067.
6
GSH attenuates RANKL-induced osteoclast formation in vitro and LPS-induced bone loss in vivo.
Biomed Pharmacother. 2020 Aug;128:110305. doi: 10.1016/j.biopha.2020.110305. Epub 2020 May 30.
7
The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice.
Free Radic Biol Med. 2012 Mar 1;52(5):841-9. doi: 10.1016/j.freeradbiomed.2011.11.026. Epub 2011 Dec 14.
8
10
MitoQ protects against liver injury induced by severe burn plus delayed resuscitation by suppressing the mtDNA-NLRP3 axis.
Int Immunopharmacol. 2020 Mar;80:106189. doi: 10.1016/j.intimp.2020.106189. Epub 2020 Jan 20.

引用本文的文献

1
Mechanisms and therapeutic perspectives of mitochondrial dysfunction of macrophages in periodontitis.
Front Cell Infect Microbiol. 2025 Aug 11;15:1634909. doi: 10.3389/fcimb.2025.1634909. eCollection 2025.
3
The association between A Body Shape Index and total bone mineral density in adults aged 20 to 59 NHANES 2011 to 2018.
Medicine (Baltimore). 2025 May 30;104(22):e42652. doi: 10.1097/MD.0000000000042652.
4
Research progress on osteoclast regulation by biodegradable magnesium and its mechanism.
Regen Biomater. 2025 Apr 26;12:rbaf026. doi: 10.1093/rb/rbaf026. eCollection 2025.
6
Implant-Derived Isolates Drive Strain-Specific Invasion Dynamics and Bioenergetic Alterations in Osteoblasts.
Antibiotics (Basel). 2025 Jan 23;14(2):119. doi: 10.3390/antibiotics14020119.
7
Important Role of Mitochondrial Dysfunction in Immune Triggering and Inflammatory Response in Rheumatoid Arthritis.
J Inflamm Res. 2024 Dec 27;17:11631-11657. doi: 10.2147/JIR.S499473. eCollection 2024.
9
Fermented by Improve Multiple Patterns Driven Osteoporosis.
Foods. 2024 Aug 23;13(17):2649. doi: 10.3390/foods13172649.

本文引用的文献

3
A distinctive physiological role for IkappaBbeta in the propagation of mitochondrial respiratory stress signaling.
J Biol Chem. 2008 May 2;283(18):12586-94. doi: 10.1074/jbc.M710481200. Epub 2008 Feb 13.
4
Hypoxia-mediated mitochondrial stress in RAW264.7 cells induces osteoclast-like TRAP-positive cells.
Ann N Y Acad Sci. 2007 Nov;1117:51-61. doi: 10.1196/annals.1402.067.
5
Detection, characterization, and decay kinetics of ROS and thiyl adducts of mito-DEPMPO spin trap.
Chem Res Toxicol. 2007 Jul;20(7):1053-60. doi: 10.1021/tx700101d. Epub 2007 Jun 9.
6
Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems.
Nat Rev Immunol. 2007 Apr;7(4):292-304. doi: 10.1038/nri2062.
7
Mitochondrial dysfunction and molecular pathways of disease.
Exp Mol Pathol. 2007 Aug;83(1):84-92. doi: 10.1016/j.yexmp.2006.09.008. Epub 2007 Jan 18.
8
Redox signalling in anchorage-dependent cell growth.
Cell Signal. 2007 Apr;19(4):672-82. doi: 10.1016/j.cellsig.2006.11.009. Epub 2006 Nov 28.
9
Regulation of osteoclast differentiation and function by the CaMK-CREB pathway.
Nat Med. 2006 Dec;12(12):1410-6. doi: 10.1038/nm1515. Epub 2006 Nov 26.
10
Hypoxia induces giant osteoclast formation and extensive bone resorption in the cat.
Calcif Tissue Int. 2006 Nov;79(5):301-9. doi: 10.1007/s00223-006-0082-7. Epub 2006 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验