Xiangyang No.1 People' Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Biomed Pharmacother. 2020 Aug;128:110305. doi: 10.1016/j.biopha.2020.110305. Epub 2020 May 30.
Osteoclasts are capable of adhering the bone matrix, then secrete acid and lytic enzymes to resorb it. Reactive oxygen species (ROS), as a signaling messenger, plays an important role in the receptor activator nuclear factor κB ligand (RANKL) signal pathway during osteoclast differentiation. Glutathione (GSH) is known to be a powerful antioxidant which can scavenge intracellular ROS. This study aimed to investigate whether GSH can as a protective agent against the RANKL-stimulated osteoclastogenesis by suppressing intracellular ROS. Here, we showed that GSH markedly restricted RNAKL-induced differentiation of bone marrow-derived macrophages (BMMs) to form osteoclasts. GSH suppressed RANKL-induced ROS generation and subsequent ROS-induced NF-κB signaling pathways within BMMs during osteoclastogenesis. Further, GSH acted to significantly downregulate the osteoclastogenic genes expression of nuclear factor in activated T cells, cytoplasmic1 (NFATc1), C-fos, the tartrate-resistant acid phosphatase (TRAP), and osteoclast-associated immunoglobulin-like receptor (OSCAR). Our results suggested that GSH inhibits intracellular ROS-mediated NF-κB signal pathway involved in osteoclast differentiation. These findings might form the basis of a new strategy for treating bone disease associated with excessive bone resorption.
破骨细胞能够黏附在骨基质上,然后分泌酸和溶酶体来吸收它。活性氧(ROS)作为一种信号信使,在破骨细胞分化过程中的核因子κB 配体(RANKL)信号通路中发挥重要作用。谷胱甘肽(GSH)是一种强大的抗氧化剂,可清除细胞内的 ROS。本研究旨在探讨 GSH 是否可以通过抑制细胞内 ROS 作为一种保护剂来对抗 RANKL 刺激的破骨细胞生成。在这里,我们表明 GSH 明显限制了骨髓来源的巨噬细胞(BMM)向破骨细胞分化的 RNAKL 诱导。GSH 抑制了 RANKL 诱导的破骨细胞生成过程中 BMM 内 ROS 的产生和随后的 ROS 诱导的 NF-κB 信号通路。此外,GSH 显著下调了破骨细胞生成基因表达的核因子在激活的 T 细胞、细胞质 1(NFATc1)、C-fos、抗酒石酸酸性磷酸酶(TRAP)和破骨细胞相关免疫球蛋白样受体(OSCAR)。我们的结果表明,GSH 抑制了破骨细胞分化过程中涉及的细胞内 ROS 介导的 NF-κB 信号通路。这些发现可能为治疗与过度骨吸收相关的骨骼疾病提供新的策略基础。