Suppr超能文献

基于样本熵的房颤组织分析的最优参数研究。

Optimal parameters study for sample entropy-based atrial fibrillation organization analysis.

机构信息

Innovation in Bioengineering Research Group, University of Castilla-La Mancha, Spain.

出版信息

Comput Methods Programs Biomed. 2010 Jul;99(1):124-32. doi: 10.1016/j.cmpb.2010.02.009. Epub 2010 Apr 13.

Abstract

Sample entropy (SampEn) is a nonlinear regularity index that requires the a priori selection of three parameters: the length of the sequences to be compared, m, the patterns similarity tolerance, r, and the number of samples under analysis, N. Appropriate values for m, r and N have been recommended and widely used in the literature for the application of SampEn to some physiological time series, such as heart rate, hormonal data, etc. However, no guidelines exist for the selection of that values in other cases. Therefore, an optimal parameters study should be required for the application of SampEn to not previously analyzed biomedical signals. In the present work, a thorough analysis on the optimal values for m, r and N is presented within the context of atrial fibrillation (AF) organization estimation, computed from surface electrocardiogram recordings. Recently, the evaluation of AF organization through SampEn, has revealed clinically useful information that could be used for a better treatment of this arrhythmia. The present study analyzed optimal SampEn parameter values within two different scenarios of AF organization estimation, such as the prediction of paroxysmal AF termination and the electrical cardioversion outcome in persistent AF. As a result, interesting recommendations about the selection of m, r and N, together with the relationship between N and the sampling rate (f(s)) were obtained. More precisely, (i) the proportion between N and f(s) should be higher than 1s and f(s)>or=256 Hz, (ii) overlapping between adjacent N-length windows does not improve AF organization estimation with respect to the analysis of non-overlapping windows, and (iii) values of m and r maximizing successful classification for the analyzed AF databases should be considered within a range wider than the proposed in the literature for heart rate analysis, i.e. m=1 and m=2 and r between 0.1 and 0.25 times the standard deviation of the data.

摘要

样本熵(SampEn)是一种非线性规则性指标,需要预先选择三个参数:要比较的序列长度 m、模式相似性容限 r 和分析的样本数 N。文献中已经推荐并广泛使用了 m、r 和 N 的适当值,用于将 SampEn 应用于某些生理时间序列,如心率、激素数据等。然而,在其他情况下,尚无选择这些值的指南。因此,对于 SampEn 在未分析的生物医学信号中的应用,应该需要进行最佳参数研究。在本工作中,在从体表心电图记录计算的心房颤动(AF)组织估计的背景下,对 m、r 和 N 的最佳值进行了全面分析。最近,通过 SampEn 评估 AF 组织揭示了一些有用的临床信息,这些信息可用于更好地治疗这种心律失常。本研究在 AF 组织估计的两种不同情况下分析了最佳 SampEn 参数值,例如预测阵发性 AF 终止和持续性 AF 中的电复律结果。结果,获得了有关 m、r 和 N 的选择以及 N 与采样率(f(s))之间关系的有趣建议。更具体地说,(i)N 和 f(s)之间的比例应高于 1s 和 f(s)>或=256 Hz,(ii)相邻 N 长度窗口之间的重叠不会提高 AF 组织估计的准确性,与非重叠窗口的分析相比,(iii)对于分析的 AF 数据库,应考虑使分类成功的最大 m 和 r 值在比文献中建议用于心率分析的范围更宽的范围内,即 m=1 和 m=2,r 介于数据标准偏差的 0.1 到 0.25 倍之间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验