Suppr超能文献

基于斜率熵的发热时间序列分析及其在早期无创鉴别诊断中的应用

Fever Time Series Analysis Using Slope Entropy. Application to Early Unobtrusive Differential Diagnosis.

作者信息

Cuesta-Frau David, Dakappa Pradeepa H, Mahabala Chakrapani, Gupta Arjun R

机构信息

Technological Institute of Informatics, Universitat Politècnica de València, Alcoi Campus, 03801 Alcoi, Spain.

Clinical Pharmacology, Nanjappa Hospitals, Shimoga 91903, India.

出版信息

Entropy (Basel). 2020 Sep 15;22(9):1034. doi: 10.3390/e22091034.

Abstract

Fever is a readily measurable physiological response that has been used in medicine for centuries. However, the information provided has been greatly limited by a plain thresholding approach, overlooking the additional information provided by temporal variations and temperature values below such threshold that are also representative of the subject status. In this paper, we propose to utilize continuous body temperature time series of patients that developed a fever, in order to apply a method capable of diagnosing the specific underlying fever cause only by means of a pattern relative frequency analysis. This analysis was based on a recently proposed measure, Slope Entropy, applied to a variety of records coming from dengue and malaria patients, among other fever diseases. After an input parameter customization, a classification analysis of malaria and dengue records took place, quantified by the Matthews Correlation Coefficient. This classification yielded a high accuracy, with more than 90% of the records correctly labelled in some cases, demonstrating the feasibility of the approach proposed. This approach, after further studies, or combined with more measures such as Sample Entropy, is certainly very promising in becoming an early diagnosis tool based solely on body temperature temporal patterns, which is of great interest in the current Covid-19 pandemic scenario.

摘要

发热是一种易于测量的生理反应,在医学中已应用了数百年。然而,所提供的信息在很大程度上受到简单阈值法的限制,忽略了时间变化以及低于该阈值的温度值所提供的额外信息,而这些信息同样代表了受试者的状态。在本文中,我们建议利用发热患者的连续体温时间序列,以便应用一种仅通过模式相对频率分析就能诊断特定潜在发热原因的方法。这种分析基于最近提出的一种度量——斜率熵,应用于来自登革热和疟疾患者以及其他发热疾病的各种记录。在对输入参数进行定制后,对疟疾和登革热记录进行了分类分析,并通过马修斯相关系数进行量化。这种分类产生了很高的准确率,在某些情况下,超过90%的记录被正确标记,证明了所提出方法的可行性。经过进一步研究,或者与样本熵等更多度量相结合,这种方法肯定非常有希望成为一种仅基于体温时间模式的早期诊断工具,这在当前的新冠疫情背景下具有极大的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ba0/7597093/c4aa05975006/entropy-22-01034-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验