Suppr超能文献

鱿鱼皮肤中分布式光感的证据。

Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis.

机构信息

Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.

出版信息

Biol Lett. 2010 Oct 23;6(5):600-3. doi: 10.1098/rsbl.2010.0223. Epub 2010 Apr 14.

Abstract

We report that the skin of cuttlefish, Sepia officinalis, contains opsin transcripts suggesting a possible role of distributed light sensing for dynamic camouflage and signalling. The mRNA coding for opsin from various body regions was amplified and sequenced, and gene expression was detected in fin and ventral skin samples. The amino acid sequence of the opsin polypeptide that these transcripts would produce was identical in retina and fin tissue samples, but the ventral skin opsin transcripts differed by a single amino acid. The diverse camouflage and signalling body patterns of cephalopods are visually controlled, and these findings suggest a possible additional mechanism of light sensing and subsequent skin patterning. Cuttlefish, along with a number of other cephalopod species, have been shown to be colour-blind. Since the opsin in the fin is identical to that of the retina (λmax=492 nm), and the ventral transcripts are also unlikely to be spectrally different, colour discrimination by the skin opsins is unlikely. However, spectral discrimination could be provided by involving other skin structures (chromatophores and iridophores), which produce changeable colours and patterns. This 'distributed sensing' could supplement the otherwise visually driven dynamic camouflage system by assisting with colour or brightness matching to adjacent substrates.

摘要

我们报告称,乌贼(Sepia officinalis)的皮肤中含有视蛋白转录本,这表明分布式光感可能在动态伪装和信号传递中发挥作用。我们扩增并测序了来自不同身体区域的编码视蛋白的 mRNA,并在鳍和腹侧皮肤样本中检测到基因表达。这些转录本产生的视蛋白多肽的氨基酸序列在视网膜和鳍组织样本中是相同的,但腹侧皮肤视蛋白转录本仅在一个氨基酸上存在差异。头足类动物的多样化伪装和信号身体图案是由视觉控制的,这些发现表明存在可能的额外光感和随后的皮肤图案形成机制。乌贼与其他一些头足类动物一样,被证明是色盲。由于鳍中的视蛋白与视网膜中的视蛋白相同(λmax=492nm),并且腹侧转录本也不太可能在光谱上有所不同,因此皮肤视蛋白不太可能进行颜色辨别。然而,通过涉及产生可变颜色和图案的其他皮肤结构(色素细胞和虹彩细胞),可以实现光谱辨别。这种“分布式感应”可以通过辅助与相邻基质的颜色或亮度匹配来补充原本由视觉驱动的动态伪装系统。

相似文献

1
Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis.
Biol Lett. 2010 Oct 23;6(5):600-3. doi: 10.1098/rsbl.2010.0223. Epub 2010 Apr 14.
2
Visual phototransduction components in cephalopod chromatophores suggest dermal photoreception.
J Exp Biol. 2015 May 15;218(Pt 10):1596-602. doi: 10.1242/jeb.117945.
3
Night vision by cuttlefish enables changeable camouflage.
J Exp Biol. 2010 Dec 1;213(Pt 23):3953-60. doi: 10.1242/jeb.044750.
4
Cataloging Body Patterning in the Dwarf Cuttlefish ().
Biol Bull. 2022 Jun;242(3):250-258. doi: 10.1086/720364. Epub 2022 May 31.
5
Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Mar;199(3):211-25. doi: 10.1007/s00359-012-0785-3. Epub 2012 Dec 20.
6
A brain atlas for the camouflaging dwarf cuttlefish, Sepia bandensis.
Curr Biol. 2023 Jul 10;33(13):2794-2801.e3. doi: 10.1016/j.cub.2023.06.007. Epub 2023 Jun 20.
7
Camouflage during movement in the European cuttlefish (Sepia officinalis).
J Exp Biol. 2015 Nov;218(Pt 21):3391-8. doi: 10.1242/jeb.122481. Epub 2015 Sep 18.
8
Dark scene elements strongly influence cuttlefish camouflage responses in visually cluttered environments.
Vision Res. 2018 Aug;149:86-101. doi: 10.1016/j.visres.2018.06.003. Epub 2018 Jul 5.

引用本文的文献

1
Neural responses to light stimulation in the octopus arm.
J Exp Biol. 2025 Apr 1;228(7). doi: 10.1242/jeb.250111. Epub 2025 Mar 31.
2
The neural basis of visual processing and behavior in cephalopods.
Curr Biol. 2023 Oct 23;33(20):R1106-R1118. doi: 10.1016/j.cub.2023.08.093.
3
Dynamic light filtering over dermal opsin as a sensory feedback system in fish color change.
Nat Commun. 2023 Aug 22;14(1):4642. doi: 10.1038/s41467-023-40166-4.
4
Algal Ocelloids and Plant Ocelli.
Plants (Basel). 2022 Dec 22;12(1):61. doi: 10.3390/plants12010061.
5
Placing human gene families into their evolutionary context.
Hum Genomics. 2022 Nov 11;16(1):56. doi: 10.1186/s40246-022-00429-5.
6
The Colours of Octopus: Using Spectral Data to Measure Octopus Camouflage.
Vision (Basel). 2022 Sep 22;6(4):59. doi: 10.3390/vision6040059.
7
Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2204852119. doi: 10.1073/pnas.2204852119. Epub 2022 Jun 1.
9
A model of octopus epidermis pattern mimicry mechanisms using inverse operation of the Turing reaction model.
PLoS One. 2021 Aug 11;16(8):e0256025. doi: 10.1371/journal.pone.0256025. eCollection 2021.
10
Diversity of Light Sensing Molecules and Their Expression During the Embryogenesis of the Cuttlefish ().
Front Physiol. 2020 Sep 29;11:521989. doi: 10.3389/fphys.2020.521989. eCollection 2020.

本文引用的文献

1
Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea).
J Exp Biol. 2010 Jan 15;213(2):249-55. doi: 10.1242/jeb.033159.
2
Expressions of rod and cone photoreceptor-like proteins in human epidermis.
Exp Dermatol. 2009 Jun;18(6):567-70. doi: 10.1111/j.1600-0625.2009.00851.x.
3
Mechanisms and behavioural functions of structural coloration in cephalopods.
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S149-63. doi: 10.1098/rsif.2008.0366.focus. Epub 2008 Dec 15.
4
Bioluminescence in mesopelagic squid: diel color change during counterillumination.
Science. 1980 Jun 13;208(4449):1286-8. doi: 10.1126/science.208.4449.1286.
6
Color discrimination in the red range with only one long-wavelength sensitive opsin.
J Exp Biol. 2006 May;209(Pt 10):1944-55. doi: 10.1242/jeb.02207.
7
Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay.
Vision Res. 2006 May;46(11):1746-53. doi: 10.1016/j.visres.2005.09.035. Epub 2006 Jan 10.
8
The signaling pathway in photoresponses that may be mediated by visual pigments in erythrophores of Nile tilapia.
Pigment Cell Res. 2005 Oct;18(5):360-9. doi: 10.1111/j.1600-0749.2005.00267.x.
9
Visual pigments of the octopus and cuttlefish.
Nature. 1958 Nov 8;182(4645):1288-90. doi: 10.1038/1821288a0.
10
Direct reception of light by chromatophores of lower vertebrates.
Pigment Cell Res. 2001 Oct;14(5):312-9. doi: 10.1034/j.1600-0749.2001.140502.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验