Suppr超能文献

内髓降、升直小血管的结构:逆流交换的途径。

Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.

机构信息

Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724-5051, USA.

出版信息

Am J Physiol Renal Physiol. 2010 Jul;299(1):F265-72. doi: 10.1152/ajprenal.00071.2010. Epub 2010 Apr 14.

Abstract

Pathways and densities of descending vasa recta (DVR) and ascending vasa recta (AVR) in the outer zone of the inner medulla (IM) were evaluated to better understand medullary countercurrent exchange. Nearly all urea transporter B (UT-B)-positive DVR, those vessels exhibiting a continuous endothelium, descend with little or no branching exclusively through the intercluster region. All DVR have a terminal fenestrated (PV-1-positive) segment that partially overlaps with the UT-B-positive segment. This fenestrated segment descends a distance equal to approximately 15% of the length of the connecting UT-B-positive segment before formation of the first branch. The onset of branching is indicative of vessel entry into the intracluster region. The number density of UT-B-positive DVR at 3,000 mum below the OM-IM boundary is approximately 60% lower than the density at 400 mum below the OM-IM boundary, a result of DVR joining to fenestrated interconnecting vessels and an overall decline in UT-B expression. AVR that lie in the intercluster region (designated AVR(2)) lie distant from CDs and ascend to the OM-IM boundary with little or no branching. AVR(2a) represent a subcategory of AVR(2) that abut DVR. The mean DVR length (combined UT-B- and PV-1-positive segments) nearly equals the mean AVR(2a) length, implying a degree of overall equivalence in fluid and solute countercurrent exchange may exist. The AVR(2)/DVR ratio is approximately 2:1, and the AVR(2a)/DVR ratio is approximately 1:1; however, the AVR/DVR ratio determined for the full complement of fenestrated vessels is approximately 4:1. The excess fenestrated vessels include vessels of the intracluster region (designated AVR(1)). Countercurrent exchange between vasa recta occurs predominantly in the intercluster region. This architecture supports previous functional estimates of capillary fluid uptake in the renal IM.

摘要

评估了内髓质外层中降支直血管 (DVR) 和升支直血管 (AVR) 的途径和密度,以更好地了解髓质逆流交换。几乎所有的尿素转运体 B (UT-B) 阳性 DVR,即那些具有连续内皮的血管,在几乎没有分支的情况下,专门通过簇间区域下降。所有 DVR 都有一个终末有孔(PV-1 阳性)的节段,该节段与 UT-B 阳性节段部分重叠。这个有孔的节段下降的距离大约等于连接的 UT-B 阳性节段的 15%,然后才形成第一个分支。分支的开始表明血管进入了簇内区域。在 OM-IM 边界以下 3000μm 处的 UT-B 阳性 DVR 的数量密度比在 OM-IM 边界以下 400μm 处低约 60%,这是由于 DVR 与有孔的互连血管连接以及 UT-B 表达的整体下降所致。位于簇间区域的 AVR(称为 AVR(2))远离 CDs,并以很少或没有分支的方式上升到 OM-IM 边界。AVR(2a) 代表 AVR(2)的一个亚类,与 DVR 相邻。DVR 的平均长度(结合 UT-B-和 PV-1 阳性节段)几乎等于 AVR(2a)的平均长度,这意味着在流体和溶质逆流交换方面可能存在一定程度的总体等效性。AVR(2)/DVR 的比例约为 2:1,AVR(2a)/DVR 的比例约为 1:1;然而,对于完整的有孔血管,AVR/DVR 的比例约为 4:1。多余的有孔血管包括簇内区域的血管(称为 AVR(1))。直血管之间的逆流交换主要发生在簇间区域。这种结构支持之前对肾髓质中毛细血管液体摄取的功能估计。

相似文献

1
Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.
Am J Physiol Renal Physiol. 2010 Jul;299(1):F265-72. doi: 10.1152/ajprenal.00071.2010. Epub 2010 Apr 14.
2
Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow.
Am J Physiol Renal Physiol. 2010 Jul;299(1):F273-9. doi: 10.1152/ajprenal.00072.2010. Epub 2010 Apr 14.
3
Quantitative analysis of functional reconstructions reveals lateral and axial zonation in the renal inner medulla.
Am J Physiol Renal Physiol. 2008 Jun;294(6):F1306-14. doi: 10.1152/ajprenal.00068.2008. Epub 2008 Apr 16.
4
Three-dimensional architecture of inner medullary vasa recta.
Am J Physiol Renal Physiol. 2006 Jun;290(6):F1355-66. doi: 10.1152/ajprenal.00481.2005. Epub 2005 Dec 27.
5
Renal medullary microcirculation: architecture and exchange.
Microcirculation. 1995 Aug;2(2):125-39. doi: 10.3109/10739689509146761.
6
Architecture of the human renal inner medulla and functional implications.
Am J Physiol Renal Physiol. 2015 Oct 1;309(7):F627-37. doi: 10.1152/ajprenal.00236.2015. Epub 2015 Aug 19.
7
Isolation and perfusion of rat inner medullary vasa recta.
Am J Physiol Renal Physiol. 2015 Aug 15;309(4):F300-4. doi: 10.1152/ajprenal.00214.2015. Epub 2015 Jun 10.
8
Analysis of microvascular water and solute exchanges in the renal medulla.
Am J Physiol. 1984 Aug;247(2 Pt 2):F303-15. doi: 10.1152/ajprenal.1984.247.2.F303.
9
The renal medullary microcirculation.
Front Biosci. 2000 Jun 1;5:E36-52. doi: 10.2741/edwards.
10
Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
Am J Physiol Regul Integr Comp Physiol. 2012 Oct 1;303(7):R748-56. doi: 10.1152/ajpregu.00300.2012. Epub 2012 Aug 22.

引用本文的文献

1
Genes and Evolution of Urea Transporters.
Subcell Biochem. 2025;118:1-17. doi: 10.1007/978-981-96-6898-4_1.
2
Tiny clue reveals the general trend: a bibliometric and visualized analysis of renal microcirculation.
Ren Fail. 2024 Dec;46(1):2329249. doi: 10.1080/0886022X.2024.2329249. Epub 2024 Mar 14.
3
Mammalian urine concentration: a review of renal medullary architecture and membrane transporters.
J Comp Physiol B. 2018 Nov;188(6):899-918. doi: 10.1007/s00360-018-1164-3. Epub 2018 May 24.
4
Ascending Vasa Recta Are Angiopoietin/Tie2-Dependent Lymphatic-Like Vessels.
J Am Soc Nephrol. 2018 Apr;29(4):1097-1107. doi: 10.1681/ASN.2017090962. Epub 2017 Dec 13.
5
Recent advances in renal hypoxia: insights from bench experiments and computer simulations.
Am J Physiol Renal Physiol. 2016 Jul 1;311(1):F162-5. doi: 10.1152/ajprenal.00228.2016. Epub 2016 May 4.
6
Architecture of the human renal inner medulla and functional implications.
Am J Physiol Renal Physiol. 2015 Oct 1;309(7):F627-37. doi: 10.1152/ajprenal.00236.2015. Epub 2015 Aug 19.
7
Isolation and perfusion of rat inner medullary vasa recta.
Am J Physiol Renal Physiol. 2015 Aug 15;309(4):F300-4. doi: 10.1152/ajprenal.00214.2015. Epub 2015 Jun 10.
8
Renal autoregulation in health and disease.
Physiol Rev. 2015 Apr;95(2):405-511. doi: 10.1152/physrev.00042.2012.
9
Recent advances in renal hemodynamics: insights from bench experiments and computer simulations.
Am J Physiol Renal Physiol. 2015 May 1;308(9):F951-5. doi: 10.1152/ajprenal.00008.2015. Epub 2015 Feb 25.
10
Targeted delivery of solutes and oxygen in the renal medulla: role of microvessel architecture.
Am J Physiol Renal Physiol. 2014 Sep 15;307(6):F649-55. doi: 10.1152/ajprenal.00276.2014. Epub 2014 Jul 23.

本文引用的文献

1
Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow.
Am J Physiol Renal Physiol. 2010 Jul;299(1):F273-9. doi: 10.1152/ajprenal.00072.2010. Epub 2010 Apr 14.
2
Functional implications of the three-dimensional architecture of the rat renal inner medulla.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F973-87. doi: 10.1152/ajprenal.00249.2009. Epub 2010 Jan 6.
3
The mammalian urine concentrating mechanism: hypotheses and uncertainties.
Physiology (Bethesda). 2009 Aug;24:250-6. doi: 10.1152/physiol.00013.2009.
4
A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F537-48. doi: 10.1152/ajprenal.90497.2008. Epub 2009 Apr 29.
5
Loop of Henle interaction with interstitial nodal spaces in the renal inner medulla.
Am J Physiol Renal Physiol. 2008 Dec;295(6):F1744-51. doi: 10.1152/ajprenal.90483.2008. Epub 2008 Oct 8.
6
Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla.
Am J Physiol Renal Physiol. 2008 Nov;295(5):F1271-85. doi: 10.1152/ajprenal.90252.2008. Epub 2008 May 21.
7
Quantitative analysis of functional reconstructions reveals lateral and axial zonation in the renal inner medulla.
Am J Physiol Renal Physiol. 2008 Jun;294(6):F1306-14. doi: 10.1152/ajprenal.00068.2008. Epub 2008 Apr 16.
8
Aquaporin-1 is not expressed in descending thin limbs of short-loop nephrons.
J Am Soc Nephrol. 2007 Nov;18(11):2937-44. doi: 10.1681/ASN.2007010056. Epub 2007 Oct 17.
9
Three-dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla.
Am J Physiol Renal Physiol. 2007 Sep;293(3):F696-704. doi: 10.1152/ajprenal.00231.2007. Epub 2007 Jul 3.
10
Three-dimensional architecture of inner medullary vasa recta.
Am J Physiol Renal Physiol. 2006 Jun;290(6):F1355-66. doi: 10.1152/ajprenal.00481.2005. Epub 2005 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验